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Host Defense Mechanisms
Triggered by Microbial

Lipoproteins Through Toll-Like
Receptors
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The generation of cell-mediated immunity against many infectious pathogens
involves the production of interleukin-12 (IL-12), a key signal of the innate
immune system. Yet, for many pathogens, the molecules that induce IL-12
production by macrophages and the mechanisms by which they do so remain
undefined. Here it is shown that microbial lipoproteins are potent stimulators
of IL-12 production by human macrophages, and that induction is mediated by
Toll-like receptors (TLRs). Several lipoproteins stimulated TLR-dependent tran-
scription of inducible nitric oxide synthase and the production of nitric oxide,
a powerful microbicidal pathway. Activation of TLRs by microbial lipoproteins
may initiate innate defense mechanisms against infectious pathogens.

Besides causing disease, mycobacteria have
long been recognized for having powerful
immunologic adjuvant activity, augmenting
both cell-mediated and humoral immune re-
sponses. In 1972, a study of the mechanism
of mycobacterial adjuvants demonstrated the
induction of “soluble mediators,” now
known to be cytokines, which mediated the
augmentation of immune responses (1).
One cytokine induced by mycobacteria is
IL-12 (2), a powerful signal for the gener-
ation of T helper type 1 lymphocyte (TH1)
responses (3) required to eliminate intracel-
lular pathogens (4 ), including Mycobacte-
rium tuberculosis (5). Furthermore, indi-

viduals with mutations in the IL-12 recep-
tor (IL-12R) have increased susceptibility
to mycobacterial infection (6 ). We there-
fore investigated the mycobacterial prod-
ucts that induce IL-12 as well as the mech-
anism responsible for its induction.

Mycobacterium tuberculosis H37Rv was
gamma-irradiated and lysed by mechanical
disruption, subcellular fractions were gener-
ated (7) and tested for the capacity to induce
IL-12 with a human monocyte line, THP-1
(8). Other than the M. tuberculosis lysate, the
soluble cell wall–associated proteins (SCWPs)
contained most of the IL-12 p40–inducing ca-
pacity, consistent with the known adjuvant ac-

tivity of mycobacterial cell walls (Fig. 1A). The
combined cytosolic and membrane protein frac-
tion, the culture filtrate, the lipoglycan from M.
tuberculosis, and the mycolyl arabinogalactan
peptidoglycan complex were less potent on a
per weight basis (9).

To identify the cell wall–associated pro-
teins responsible for IL-12 p40 release, we
fractionated the SCWP preparation by gel
filtration chromatography and preparative iso-
electric focusing and monitored the bioactivity
by measuring IL-12 p40 production (10). Sub-
sequent separation of the bioactive fraction by
SDS-PAGE indicated four prominently stained
proteins: three bands at 17, 21.5, and 39 kD and
a doublet at 60 to 70 kD (Fig. 1B). After these
regions were transferred to nitrocellulose, they
were solubilized (11) and used to stimulate
THP-1 cells. The band migrating to 21.5 kD
induced the highest levels of IL-12 p40 release,
followed by the 39-kD band, with the two other
regions inducing little activity (Fig. 1C). By
using monoclonal antibodies to known M. tu-
berculosis antigens for protein immunoblot
analysis, we identified the 21.5-kD band as the
19-kD lipoprotein antigen of M. tuberculosis
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and the 39-kD band as the M. tuberculosis
38-kD lipoprotein antigen (PstS homolog) (12).
Purified 19- and 38-kD lipoproteins of M.
tuberculosis induced IL-12 p40 release,
with the 19-kD lipoprotein greater than one
log more potent than whole M. tuberculosis
and the 38-kD lipoprotein (Fig. 1D). The
ability of the 19-kD lipoprotein to induce
IL-12 was independent of tumor necrosis
factor–a (TNF-a) release, because neutral-
izing antibodies to TNF-a (anti-TNF-a)
blocked by less than 10% the induction of
IL-12 p40 (13). The 19-kD lipoprotein also
stimulated IL-12 p70 release from normal
human monocytes (14 ). Thus, the M. tuber-
culosis 19-kD lipoprotein is a major induc-
er of IL-12, a cytokine that can amplify
TH1 and cytolytic T cell responses and
hence contribute to the adjuvant activity of
mycobacteria.

We investigated the mechanism by which
the 19-kD lipoprotein induces IL-12 by using
an IL-12 p40 promoter CAT reporter transient-
ly transfected into the mouse macrophage cell
line RAW 264.7 (15, 16). The 19-kD lipopro-
tein induced IL-12 p40 promoter activity in a
dose-dependent manner and at a level compa-
rable to lipopolysaccharide (LPS) (Fig. 2A).
Previous studies indicated that LPS induction of
IL-12 p40 promoter activity is dependent on
both C/EBP and nuclear factor kappa B (NF-
kB) sites (15, 17). The ability of both the 19-kD
lipoprotein and LPS to induce IL-12 p40 pro-
moter activity was reduced in substitution mu-
tants of the C/EBP and NF-kB sites, but was
not affected by a mutation in a PU.1-binding
site (Fig. 2B).

Given that the 19-kD lipoprotein induced
monocyte IL-12 in a manner analogous to LPS,
we reasoned that the cell surface receptor that
transduces the signal for the 19-kD lipoprotein
may be identical to that for LPS. Because Toll-
like receptors (TLRs) have been reported to

activate monocyte cytokine production (18), to
bind LPS, and to transduce the proper signal for
LPS-stimulated gene activation in monocytes
(19), we hypothesized that the 19-kD lipopro-

tein could induce IL-12 through TLRs. TLR
family members are transmembrane proteins
containing repeated leucine-rich motifs in their
extracellular portions, similar to other pattern

Fig. 1. A 19-kD M. tuberculosis lipoprotein induces
IL-12 from monocytes. (A) Ability of M. tubercu-
losis subcellular fractions to stimulate IL-12 re-
lease from monocytes. The detergent-soluble cell
wall–associated subcellular fraction (SCWP) re-
tains most of the M. tuberculosis IL-12 p40–
inducing capacity, as determined with the THP-1
human monocyte cell line (8). Values are ex-
pressed as mean 6 SEM of duplicate determina-
tions. Subcellular fractions of M. tuberculosis were
isolated as previously described (7). Solprot, com-
bined cytosolic and membrane fraction; manLAM,
lipoglycan from M. tuberculosis. (B) SDS-PAGE of
M. tuberculosis proteins from isoelectric focusing
fraction 4 (10). Molecular size markers are in the
left lane, and sizes are indicated in kilodaltons. (C) SDS-PAGE–separated proteins stimulate IL-12 release.
Methods are described in (13). (D) The 19-kD lipoprotein of M. tuberculosis is a potent inducer of IL-12 p40
release. THP-1 cells were stimulated with M. tuberculosis lysate and purified M. tuberculosis 19-kD, 38-kD,
and Ag85 complex proteins (12).

Fig. 2. Lipoproteins induce the IL-12 p40 promoter
through NF-kB and C/EBP and are blocked by a TLR-2
dominant negative mutant. (A) The 19-kD lipoprotein
induces IL-12 p40 promoter activity. RAW 264.7 cells
were transiently transfected with a murine IL-12 p40
promoter CAT reporter as described (15, 16). Transfec-
tants were stimulated with LPS (Salmonella typhosa,
Sigma, St. Louis, MO) or 19-kD lipoprotein, or left
unstimulated for 24 hours. Activation of IL-12 p40
promoter activity was measured according to CAT
activity (percent chloramphenicol acetylation) with
a phosphorimager. Data were normalized to a co-
transfected b-galacto-
sidase construct for
transfection efficiency.
Data are representative
of three experiments.
No stimulation was ob-
served with a control
CAT reporter plasmid
that lacked the IL-12
p40 promoter sequence.
(B) IL-12 p40 promoter
mutations in the NF-kB
(2131/2122) and
C/EBP (295/288) sites
blocked LPS (gray, 5 mg/
ml) and 19-kD lipopro-
tein (black, 5 mg/ml)
stimulated promoter ac-
tivation. RAW 264.7
cells were transiently
transfected as described
above with NF-kB,
C/EBP, and PU.1 mutant
constructs, and promot-
er induction levels were
measured by CAT assay
(15, 16). (C) A mutant form of TLR-2 (TLR-2 dn1) lacking 13 amino acids of the COOH-terminal domain
inhibits LPS and lipoprotein induction of IL-12 p40 promoter activity. Data reflect at least three independent
experiments and are reported as a percentage of antigen-stimulated IL-12 p40 promoter activity cotrans-
fected with a vector control. Lipoproteins and lipopeptides were prepared as described (31). (D) Monoclonal
antibody to TLR-2 blocks LPS- and lipoprotein-induced, but not CD40L trimer–induced, IL-12 p40 production
from human adherent monocytes (28, 38, 41).
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recognition proteins of the innate immune sys-
tem. TLR proteins also contain a cytoplasmic
domain that is homologous to the signaling
domain of the IL-1 receptor and can activate a
signaling pathway that includes activation of
NF-kB and subsequent gene transcription (19,
20). We investigated the role of TLR in 19-kD
lipoprotein–induced IL-12 production by co-
transfecting the RAW 264.7 macrophage cell
line with a TLR-2 dominant negative mutant
containing a truncation of 13 amino acids at the
COOH-terminus (19), along with the IL-12 p40
promoter construct (16). Transfection of var-
ious amounts of the TLR-2 dominant nega-
tive mutant (TLR-2 dn1) inhibited both 19-
kD lipoprotein–and LPS-induced IL-12 p40
promoter activation relative to a vector con-
trol (Fig. 2C). Activity was not inhibited by
transfection of a vector containing a control
gene, IL-1R (21).

The 19-kD M. tuberculosis lipoprotein is
a member of a family of prokaryotic lipopro-
teins. Lipoproteins have been found exten-
sively in both Gram-positive and Gram-neg-
ative bacteria, including Treponema palli-
dum, Mycoplasma species, and Borrelia
burgdorferi (22–24). Profound immunoregu-
latory functions have been attributed to li-
poproteins, including monocyte or macro-
phage activation (25). The portion of lipopro-
tein responsible for its immunologic activity
is located in the NH2-terminal triacylated li-

popeptide region. Removal of this lipid ele-
ment rendered the parent product nonactivat-
ing, and synthetic lipopeptides could activate
B cells and macrophages (23, 24, 26). Studies
of the B. burgdorferi OspA lipoprotein and
the 47-kD lipopeptide of T. pallidum demon-
strated lipoprotein induction of IL-12 mRNA
(24, 27). We found that OspA and the NH2-
terminal lipopeptide of the T. pallidum 47-kD
antigen activated IL-12 p40 promoter activity
by a TLR-dependent mechanism (Fig. 2C),
thereby providing evidence that TLRs serve
to recognize a diverse family of microbial
lipoproteins. A monoclonal antibody specific
to human TLR-2 (28) blocked the ability of
LPS and the 19-kD lipoprotein to stimulate
IL-12 production from primary human mono-
cytes, indicating the crucial role for TLR-2 in
monocyte activation by these microbial mol-
ecules (Fig. 2D). Because the deacylated
OspA (d-OspA) was unable to activate IL-12
production from THP-1 cells (29), the fatty
acyl moiety, which is genetically and struc-
turally conserved among microbial lipopro-
teins, appears to be crucial for monocyte
activation through TLRs.

Having shown that TLRs are necessary for
gene activation by lipoproteins, we sought to
learn whether TLRs are also sufficient. Using
HEK 293 cells, we transfected the NF-kB–
responsive ELAM enhancer, because activated
NF-kB is required for IL-12 p40 promoter ac-

tivity. HEK 293 cells do not express TLR-2,
nor could they be activated by LPS or microbial
lipoproteins, as determined by examination of
NF-kB induction (Fig. 3A) (19, 30). In contrast,
in stable transfectants of HEK 293 cells ex-
pressing TLR-2, microbial lipoproteins induced
NF-kB in a dose-dependent manner and at lev-
els comparable to those induced by LPS. Acti-
vation by lipoproteins was enhanced by co-
transfection with a CD14 expression vector to
levels analogous to LPS induction and consis-
tent with the role of CD14 in facilitating li-
poprotein activity (30–32) (Fig. 3B). Activation
through TLR-2 by lipoproteins was dependent
on fatty acyl moieties because deacylated forms
of OspA and T. pallidum lipopeptide (d-Tp47)
had no activity (Fig. 3C). Although the data
indicate that TLR-2 can mediate gene activa-
tion by microbial lipoproteins, the data do not
preclude a contributory role for other TLR fam-
ily members (33).

To determine whether the TLR signaling
pathway stimulated by microbial lipoproteins
could be linked to a known macrophage anti-
microbial mechanism, we investigated whether
the M. tuberculosis lipoprotein could activate
gene transcription for inducible nitric oxide

Fig. 3. TLR proteins are sufficient for the induction by lipoproteins of NF-kB activation, and
induction is enhanced by the presence of CD14. (A) Stable expression of TLR-2 in HEK 293 cells
confers lipoprotein responsiveness. HEK 293 TLR-2 and HEK 293 vector control cells were
transiently transfected with a luciferase reporter gene driven by the NF-kB responsive enhancer of
the E-selectin gene (19, 30). Luciferase activity (RLU) was measured with a luminometer (arbitrary
units). Tp47 concentrations are corrected by 6.25 3 1023. (B) CD14 enhances lipoprotein
activation of NF-kB through TLR-2. HEK 293 TLR-2 and HEK 293 vector control cells were
cotransfected with ELAM-luc (0.5 mg), along with CD14 expression plasmid (1 mg) or vector control
(1 mg) (30). Twenty-four hours after transfection the transfectants were activated with a titration
of LPS or lipoproteins for 6 hours. Activity was measured by luciferase assay. Data are represen-
tative of three independent experiments. (C) Fatty acyl moieties are required for TLR-dependent
activation of NF-kB. The HEK 293 TLR-2 stable clone and HEK 293 control cells were transiently
transfected with the ELAM-luciferase construct and activated with the OspA lipoprotein, the Tp47
lipopeptide, or deacylated forms of both antigens (31). NF-kB activation was measured by
luciferase assay.

Fig. 4. Microbial lipoproteins induce iNOS gene
transcription through TLRs. (A) Microbial li-
poproteins induce iNOS promoter activity in
RAW 264.7 cells. RAW 264.7 cells were tran-
siently transfected with the iNOS promoter
construct as described previously (16). (B) A
dominant negative mutant of TLR-2 (TLR-2
dn1) inhibits LPS and lipoprotein induction of
iNOS promoter activity. Data reflect at least
two independent experiments and are reported
as a percentage of antigen-stimulated iNOS
promoter activity in cells not transfected with
TLR-2 dn1 expression plasmid (16). Media con-
trols were comparable between vector control
and TLR-2 dn1 transfectants.
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synthase (iNOS), given the critical role of iNOS
in the production of nitric oxide from macro-
phages, currently the only effective macro-
phage mycobactericidal mechanism known in
vitro and in vivo (34). Analysis of gene-disrupt-
ed mice revealed that this mechanism was nec-
essary for protection against M. tuberculosis
(35). The 19-kD and OspA lipoproteins in-
duced iNOS promoter activity in the RAW
264.7 macrophage cell line (16, 36). Again,
activation was dependent on the fatty acyl moi-
eties, because d-OspA had no activity (Fig.
4A). Cotransfection with the TLR-2 dominant
negative mutant inhibited the ability of lipopro-
teins to induce the iNOS promoter (Fig. 4B),
thereby suggesting a role for TLRs in the acti-
vation of iNOS by microbial pathogens. Stim-
ulation of monocytes with the 19-kD antigen
also induced production of nitric oxide (37).

The presence of Toll in Drosophila indi-
cates that Toll proteins represent a host defense
mechanism that has been conserved over hun-
dreds of millions of years of evolution. In mam-
mals, TLRs provide the innate immune system
with the ability to react to a spectrum of micro-
bial pathogens expressing lipoproteins and lipo-
polysaccharides. Animals with altered TLRs
manifest increased susceptibility to infection
(33). Our data indicate that TLRs can activate
innate immune responses including the genera-
tion of NO, a direct microbicidal mechanism,
and provide an early signal for induction of
IL-12, which functions as a biologic adjuvant
amplifying acquired T cell responses to patho-
gens. Under certain conditions, the TLR signal-
ing pathway can lead to apoptosis of the target
cells resulting in down-regulation of the im-
mune response or pathology to the host (28). It
should be possible, however, to develop strate-
gies to stimulate TLRs in order to activate
antimicrobial defense mechanisms and to am-
plify immune responses to a variety of antigens
in vaccines.
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Cell Activation and Apoptosis
by Bacterial Lipoproteins

Through Toll-like Receptor-2
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Apoptosis is implicated in the generation and resolution of inflammation in
response to bacterial pathogens. All bacterial pathogens produce lipoproteins
(BLPs), which trigger the innate immune response. BLPs were found to induce
apoptosis in THP-1 monocytic cells through human Toll-like receptor–2
(hTLR2). BLPs also initiated apoptosis in an epithelial cell line transfected with
hTLR2. In addition, BLPs stimulated nuclear factor–kB, a transcriptional acti-
vator of multiple host defense genes, and activated the respiratory burst
through hTLR2. Thus, hTLR2 is a molecular link between microbial products,
apoptosis, and host defense mechanisms.

The innate immune system coordinates the
inflammatory response to pathogens. To do
so, cells of the innate immune system dis-
criminate between self and nonself by re-
ceptors that identify molecules synthesized
exclusively by microbes (1). These include
lipopolysaccharide (LPS), peptidoglycans,
lipotechoic acids, and BLPs (2). BLPs are
characterized by a unique, NH2-terminal
lipo-amino acid, N-acyl-S-diacylglyceryl
cysteine, and are ideal targets for innate
immune surveillance because they are pro-
duced by all bacteria. Although BLPs are
known to activate nuclear factor–kb (NF-
kB) (3), cytokine production (4 ), and B cell
expansion (5), it is unclear how the BLP
signal is transduced into an intracellular
message. Candidate BLP signal transducers
are Toll receptors, which are characterized
by an extracellular leucine-rich repeat do-
main and an interleukin-1 (IL-1) receptor
type 1–like intracellular signaling domain
(6 ). In Drosophila, Toll receptors are im-
portant for resistance to microbial patho-
gens (7 ). Toll and TLRs activate homolo-

gous signal transduction pathways leading
to nuclear localization of NF-kB/Rel–type
transcription factors (8). Both hTLR2 (9,
10) and murine TLR4 (11) (mTLR4) are
implicated in the innate response to LPS.
mTLR4 does not appear to function analo-
gously in LPS and BLP signaling. A muta-
tion in mTLR4, which renders cells insen-
sitive to LPS, does not abrogate BLP-in-
duced responses in mice (11, 12). There-
fore, we investigated the role of hTLR2 in
BLP signaling.

A population of human embryonic kidney
293 cells, which do not express hTLR2 (10,
13), were stably transfected with an epitope-
tagged hTLR2 (293hTLR2) and tested for the
ability to respond to BLP in an NF-kB lucif-
erase reporter gene assay (14). Synthetic li-
poprotein analogs consisting of a palmity-
lated version of N-acyl-S-diacylglyceryl cys-
teine (Pam3Cys) and a few COOH-terminal
amino acids mimic the immunomodulatory
effects of BLP (15). The synthetic bacterial
lipopeptide, Pam3CysSerLys4 (sBLP), in-
duced expression of the luciferase reporter
gene in 293hTLR2 cells, but not in the pa-
rental line (Fig. 1A). Concentrations of sBLP
or Escherichia coli murein lipoprotein (MLP)
as low as 200 pM activated the reporter gene
(Fig. 1B). The lipo–amino acid Pam3Cys and
a monoacylated derivative of sBLP (msBLP)
generated by base hydrolysis (16) did not
activate the luciferase reporter gene in 293 or
293hTLR2 cells (Fig. 1, A and B). This is
consistent with previous observations that the
acyl groups and peptide moieties of sBLP are
critical for cell activation (5, 17).
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