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Growing evidence from primate neurophysiology and modeling indicates that in reaction time tasks, a perceptual choice is made

when the firing rate of a selective cortical neural population reaches a threshold. This raises two questions: what is the neural

substrate of the threshold and how can it be adaptively tuned according to behavioral demands? Using a biophysically based

network model of spiking neurons, we show that local dynamics in the superior colliculus gives rise to an all-or-none burst

response that signals threshold crossing in upstream cortical neurons. Furthermore, the threshold level depends only weakly on

the efficacy of the cortico-collicular pathway. In contrast, the threshold and the rate of reward harvest are sensitive to, and hence

can be optimally tuned by, the strength of cortico-striatal synapses, which are known to be modifiable by dopamine-dependent

plasticity. Our model provides a framework to describe the main computational steps in a reaction time task and suggests that

separate brain pathways are critical to the detection and adjustment of a decision threshold.

Decision making proceeds from deliberation to choice selection.
Deliberation is a gradual process, usually taking a longer time when
a decision is harder or when more choice options must be considered,
whereas choosing one of the possible alternatives is categorical, often in
the form of an overt action. For decades, psychologists have used
reaction time tasks to probe the process of accumulation of informa-
tion in perceptual decisions. Extensive behavioral analyses have led to
mathematical models in which sensory information is integrated
stochastically over time, resulting in a random walk of an abstract
variable toward a preset decision threshold. A decision is made when
the random walker reaches the threshold1–4.

Recently, neurophysiological studies on nonhuman primates have
discovered single-neuron activities correlated with time integration
of sensory information during perceptual decisions. In a reaction
time version of a random-dot motion direction discrimination task
(Fig. 1a,b)5, neurons in the lateral intraparietal (LIP) area were found
to be correlated with the monkey’s decision process. Specifically, when
averaged over trials in which the monkey’s chosen motion direction was
toward the response field of a recorded LIP cell, the cell’s firing activity
showed a ramping time course during stimulus presentation, and the
ramping slope was larger with a stronger motion strength (higher
quality of sensory information), defined by the fraction of dots moving
coherently in the same direction6. Furthermore, the decision choice (as
signaled by a saccade) was made when the average firing rate of a
selective population of parietal neurons reached a threshold, which was
independent of the coherence level and the response time6. Similar
decision-correlated neural activity has also been reported in prefrontal
cortex during the same visual motion discrimination task7 and in the
frontal eye field during a visual countermanding task8,9. These observa-
tions indicate that the activity of cortical neurons resembles the

behavior predicted by models in psychology7,10–12. A biophysically
based neural network model13,14 offers a similar but modified picture,
in which neural groups selective for opposite directions of motion
compete with each other through local recurrent synaptic inhibition.
Moreover, the model proposes a candidate cellular mechanism (slow
reverberatory network dynamics mediated by NMDA receptors) for the
continuous accumulation of the sensory information (visual stimulus
in the random-dot task) over time.

Both empirical observations and theoretical analyses suggest that
ramping activity in cortical networks during stimulus presentation
only indicates the likelihood of a decision choice10,11. The actual
decision relies on downstream neurons’ ability to detect the event of
threshold crossing and to pass this information to motor systems. It is
also suggested that the threshold can be tuned to optimize the trade-off
between speed and accuracy11,15. We thus ask the following questions:
(i) what is the neural substrate of a decision threshold, (ii) how is the
threshold-crossing event read out, and (iii) can the threshold be tuned
by biologically plausible mechanisms to optimize a decision-making
process11,15,16? In this paper, we address these questions by using
biophysically based circuit modeling. We considered a large-scale
network of interconnected cortex, superior colliculus and basal ganglia.
The idea is that threshold crossing of ramping cortical neural activity
may be detected by neurons in a downstream motor command center,
which is presumably the superior colliculus in the case of saccadic eye
movements17. Indeed, burst neurons in the intermediate layer of the
superior colliculus receive inputs from many cortical areas, including
the parietal cortex, and project to midbrain neurons responsible for the
generation of saccadic eye movements17–20. These burst neurons are
typically silent when the eyes are fixated, but fire immediately before a
saccade at a rate of around 200–300 Hz for less than 100 ms. Based on
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in vitro electrophysiological data17,21–24, we built a recurrent network
model for the superior colliculus burst cells, and we tested the
hypothesis that these burst cells are suitable for reading out threshold
crossing in upstream neurons. Furthermore, the superior colliculus is
known to be under the control of the basal ganglia, which have a critical
role in voluntary motor behavior in general25–28. Neurons in substantia
nigra pars reticulata (SNr), an output structure of the basal ganglia,
send GABAergic projections to principal cells in the superior colliculus
and exhibit baseline activity as high as 50–100 Hz, providing a ‘default’
tonic inhibition to the superior colliculus. This inhibition is released
when the SNr receives increased inhibitory inputs from caudate
nucleus (CD, part of the striatum), which is driven by excitatory inputs
from many cortical areas including the LIP and frontal eye field25,29.
Thus, the cortico–basal ganglia pathway has a modulatory role in the
generation of saccadic eye movements. In addition, the striatum is the
recipient of prominent projections from midbrain dopamine neu-
rons25,30, suggesting that reward-related signals may modulate the

decision process through the striatum31–33. Based on these observa-
tions, we incorporated the cortico-collicular and cortico–basal ganglia
pathways into our model. By using a phase plane analysis, we reveal a
parallel circuit mechanism, in which the two pathways have distinct
roles in the detection and adaptive tuning of a decision threshold.

RESULTS

Our model was designed for the reaction time version of the random-
dot direction-discrimination task6. The model consists of three brain
areas (Fig. 1): the cortex (Cx), the superior colliculus (SC) and the basal
ganglia (BG). Each of the three networks contains competing neural
populations selective for left or right motion directions (denoted by
superscript L or R, respectively), and this selectivity is preserved along
the processing stages (Fig. 1c; details of model in Methods). The
cortical neurons slowly accumulate information about the stimulus
over time (Fig. 1b). The neural population receiving a stronger input
has a higher probability of ramping up its firing rate and winning the
competition; this process is stochastic because of irregular neuronal
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b Figure 1 A large-scale brain network model for the reaction time version of a

random-dot task. (a) In the task, a subject is shown a display of randomly

moving dots. The subject is required to hold his or her gaze at a fixed point

on the screen while figuring out the net motion direction of the dots. As soon

as a decision is reached, the subject indicates the direction of dot motion by

a saccadic eye movement. (b) A schematic picture showing that firing rates of

two cortical populations (CxeR and CxeL) slowly change in response to sensory

inputs (random-dot motion). A saccade is made whenever one of the popula-
tion firing rates reaches the threshold. (c) Schematic model architecture.

Neural pools in the cortical network integrate sensory information and also

compete against each other. They project to both the superior colliculus and

the caudate nucleus in the basal ganglia. Blue, populations of excitatory

neurons; red, populations of inhibitory neurons. Each population is simulated

by noisy spiking leaky integrate-and-fire neurons.
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Figure 2 Threshold detection by burst discharge in the superior colliculus

network. (a) SCe neurons display a strong burst of spikes (top) only when the

input exceeds a certain threshold level (bottom). Each input and its

corresponding SCe response are plotted with the same color. Note that a

larger input above the threshold shortens the response latency but does not

alter the shape of the stereotypical burst. (b) The SCe neuronal response

(peak spiking rate) is a step function of the input amplitude, indicating a

sharply defined threshold. The curve is drawn from the data shown in a.

(c) Interaction between excitatory (SCe) and inhibitory (SCi) neurons

underlies SCe burst generation. Schematic of sequential events (top): SCe

neurons are first activated by the input and develop a strong response due

to recurrent excitation (i); then SCe neurons activate SCi neurons slowly,

through synapses endowed with short-term facilitation, until SCi neurons

are excited (ii); finally, activated SCi neurons quickly inhibit SCe (iii) and the
system goes back to the initial state. Bottom, population firing rates (blue

and red curves), overlapped with rasters (blue and red dots, each row of dots

represent the spiking activity of a neuron) in a simulated trial, demonstrate

that SCe neurons develop a strong but brief burst of activity as a result of the

interaction between SCe and SCi.
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spiking dynamics. We now examine how such cortical signals are used
by downstream systems.

Burst response in the superior colliculus network

We first consider the behavior of an isolated SC network. During
saccadic behavior, cells in the superior colliculus exhibit a variety of
firing patterns and have been classified into burst cells, buildup cells

and so on18,19. For the sake of simplicity, our
model focuses on burst cells, whose activity
acts as a trigger for saccadic responses. The
modeled SC excitatory neurons (SCe) show
a highly nonlinear response behavior
(Fig. 2a,b): they are either silent or fire a
powerful and brief burst of spikes, depending
on whether their input is below or above
a sharply defined threshold. This high-
frequency (B250 Hz) burst is generated in
our model by recurrent excitation between
SCe cells, which is mediated by NMDA
receptors (as is consistent with experimental
evidence23). Once SCe neurons are
activated, they recruit SC inhibitory (SCi)
neurons, which eventually shut down the
SCe neurons (Fig. 2c).

For the burst to develop, inhibition
should be recruited after a delay, which we
implemented by including short-term facil-
itation at the SCe-to-SCi synapses. Therefore,
local recurrent excitatory-inhibitory connec-
tions in the superior colliculus, revealed in
in vitro studies21–24, provide a suitable
mechanism for the all-or-none burst respon-
siveness observed in the superior colliculus in
behaving animals.

Gating mechanism in the basal ganglia network

We have shown that the all-or-none response of the SC to cortical
inputs can detect a threshold crossing event in the input. We now
consider how this mechanism serves decision making in the full
Cx-BG-SC network model. We first demonstrate a single-trial simula-
tion of the full network model (Fig. 3). At the beginning of the trial,
firing rates of Cxe populations start to increase in response to their
sensory inputs. In the meantime, due to inhibition from the SNr, SCe
neurons remain silent even though the inputs from the Cxe exceed the
firing threshold of SCe neurons (6.7 Hz in the model in the absence of
inhibition from the SNr). When the firing rate of CxeR is large enough,
it activates the corresponding CDR, which in turn shuts down SNrR and
releases SCeR from inhibition. When SCeR fires a strong burst, it
triggers a motor response (signaling the choice), and at the same
time sends a ‘corollary discharge’ back to both excitatory and inhibitory
neurons in the Cx. The activated inhibitory neurons ultimately reset the
Cx network to rest.
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Figure 3 Reaction time simulation by the full network model, in a single trial with motion coherence of

12.8%. (a–c) Population firing rates of Cxe, SNr and CD, and SCe and SCi demonstrate that a SCe burst

is triggered when the firing rate of one of the Cxe populations excites the corresponding CD, which in

turn inhibits the SNr and releases its inhibition on SCe. (d–f) Corresponding rasters of population firing

rates in a–c. t ¼ 0 corresponds to stimulus onset.
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Figure 4 Invariance of the threshold across trials, regardless of decision

times and coherence levels. (a–d) Three trials are shown for each of 12.8%

and 3.2% coherence levels. Firing rate traces of a Cxe population (a,b)

indicate that Cxe always triggers a burst in SCe (c,d) when the firing rate

of Cxe reaches about the same level. t ¼ 0 corresponds to stimulus onset.

(e,f) Distributions of decision time. (g,h) Threshold level (defined as the Cxe

firing rate that triggers an SCe burst) as a function of the decision time (each

data point corresponds to an individual trial). Insets in g and h, distribution

of threshold. The threshold is independent of the decision time, even though

the latter varies considerably with the motion coherence as shown in e and f.
(i,j) The ramping slope of Cxe firing rate is inversely related to decision time

(each data point corresponds to an individual trial). Ramping slope is

calculated by running a linear regression on Cxe firing rate for the time

epoch starting from when the firing rate hits 5 Hz for the first time until

the saccade onset. The red curve is 1,300/(decision time) in i and 12,000/

(decision time) in j.
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For a given coherence level, the decision time, defined by the time it
takes from the beginning of the stimulus to the burst onset, varies
markedly across trials (Fig. 4a–d), and the trial-averaged decision time
increases with decreasing coherence (Fig. 4e,f). Yet, the decision
threshold, defined by the Cxe firing rate needed to activate the SC,
remains roughly constant across trials and is independent of the
coherence level (Fig. 4g,h). For coherence ¼ 3.2% and 12.8%, the
estimated mean Cxe firing threshold is indistinguishable (17.9 Hz
versus 17.6 Hz) and the s.d. is the same (2 Hz); hence the variability of
decision times is not attributable to that of the decision threshold.
Furthermore, on a trial-by-trial basis, the ramping slope of Cxe firing
activity is inversely correlated with the decision time (Fig. 4i,j). Note
that a fixed threshold implies that the product of the ramping slope and
decision time is roughly constant across trials, which is supported by
the observed inverse relationship between the two (Fig. 4i,j). Hence, a
reliable threshold detection mechanism is realized in our model.

Modulation of the decision threshold

To dissect the differential contributions of the Cx-SC and Cx-CD
pathways to the threshold mechanism, we found it instructive to
consider the model’s dynamics in a two-dimensional ‘phase plane’ in
which SNr firing rate is plotted against Cxe firing rate (Fig. 5a). SCe has

two states (quiet and bursting), which are determined by the firing rates
of the SNr and the Cxe. The model system follows a trajectory (black
solid curve in Fig. 5a). At stimulus onset, the system starts from the left
upper corner of the phase plane where the Cxe has a low firing rate and
the SNr shows tonic activity around 80 Hz. As time proceeds, the Cxe
firing rate ramps up until it is large enough to activate the CD and shut
down the SNr, indicated by the abrupt drop in the trajectory in the
middle of the phase plane. SCe starts to fire when the trajectory hits the
boundary (red solid curve). Therefore, the decision threshold is
determined by the intersection of the system trajectory and the state
boundary. In this example the threshold is around 10.5 Hz.

The phase plane indicates that the decision threshold can be changed
by shifting either the system trajectory or the state boundary. We found
that the state boundary can be shifted by varying the efficacy of Cx-SC
synapses. However, the shift in the state boundary results in a very small
change in the threshold (shift from the red solid curve to the red dashed
curve in Fig. 5a). On the other hand, the system trajectory can be
shifted by changing the efficacy of Cx-CD synapses. The shift in the
system trajectory produces a drastic change in the decision threshold
(shift from the black solid curve to the black dashed curve in Fig. 5a).
We verified this observation by plotting the decision threshold as
functions of Cx-CD and Cx-SC synaptic efficacies (Fig. 5b): the
range of threshold values is substantially larger when we vary the
efficacy of the Cx-CD pathway (black curve), as compared with that of
the Cx-SC pathway (red curve). Note that this conclusion assumes that
when the SNr activity starts to decrease, the change is abrupt. Indeed,
imagine that this drop was exactly a vertical line, then no shift of
threshold could possibly be induced by changing the state boundary.
On the other hand, if the SNr trajectory was very smooth—that is,
showing a slow and gradual time course—then varying the Cx-SC
synaptic strength would be able to shift the threshold more efficiently.
However, this possibility does not seem to be consistent with the
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Figure 6 Dependence of psychometric and

chronometric functions on the Cx-CD efficacy.

(a,b) Performance (percentage of correct choices)

and response time are plotted as functions of the

motion coherence c¢. When Cx-CD efficacy

increases (producing a lower decision threshold),

the performance decreases, but the response

speed (inverse of response time) increases,

resulting in a trade-off between speed and
accuracy (see Fig. 7). Data points in a are fitted

with the Weibull function p ¼ 100(1 – 0.5 �
exp(–(c¢/b)a)), where b and a are constants

estimated for each curve.

Figure 5 Roles of cortico-collicular (Cx-SC) and cortico-striatal (Cx-CD)

pathways in the determination of the decision threshold. (a) Behavior of SCe

neurons on a phase plane in which SNr and Cxe firing rates are plotted

against each other. The two SCe states, quiet state (white region) and burst

firing state (gray region), are separated by the state boundary (red curve). The

decision threshold (black circle) is determined by the intersection of the state

boundary and the dynamical trajectory (black curve) that the network system

follows over time in response to sensory inputs. The position of the state
boundary can be shifted by changing the efficacy of Cx-SC synapses (3.5 nS

for the red solid curve and 2.5 nS for the red dashed curve), and the position

of the dynamical trajectory can be shifted by changing the Cx-CD synaptic

efficacy (2.1 nS for the black solid curve and 1.5 nS for the black dashed

curve). As shown in the figure, the decision threshold is efficiently modified

by synaptic modification of the Cx-CD pathway (d1) but not by that of the Cx-

SC pathway (d2). (b) Quantification of the finding in a, which shows the

dependence of the decision threshold on the efficacy of Cx-CD and Cx-SC

synapses. Each point is the average over 100 trials. Error bars indicate s.d.
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physiological observation that SNr cells typically display a precipitous
decrease of firing rate immediately before a saccade34,35. Therefore, our
phase plane analysis of a physiologically constrained model suggests
that, although the threshold crossing (and hence response timing) is
detected through the Cx-SC pathway, the threshold value itself may be
more easily adjusted through the Cx-CD pathway.

Speed-accuracy trade-off and decision optimization

We next investigated how the cortico-striatal (Cx-CD) synaptic efficacy
affects the performance and average response time. For a given Cx-CD
synaptic efficacy, the network decision behavior is quantified by the
psychometric and chronometric functions (percentage of correct choices
and mean response time as a function of the coherence level)
(Fig. 6). When the Cx-CD synaptic efficacy is decreased, the threshold
increases and both the performance (percentage of correct choices)
and the average response time increase. These changes affect the
overall reward rate R, which can be calculated as the number of
correct (rewarded) trials per unit time, or R ¼ P/T where P
is the average percentage of correct choices and T is the average trial
duration (Methods).

We found that there is an optimal value of the Cx-CD efficacy for
which the reward rate R is maximal (Fig. 7a). The reward rate drops
when Cx-CD efficacy increases or decreases from this optimal value,
suggesting that the maximum reward rate can be achieved by tuning
the Cx-CD efficacy. This can be intuitively explained by a speed-
accuracy trade-off11: a very low threshold reduces the decision times
but yields more errors, whereas a sufficiently high threshold improves
performance yet prolongs decision times. Neither is ideal for maximiz-
ing the reward amount per unit time. To further test this interpretation,
we manipulated the degree of task difficulty. Instead of a uniform
distribution of coherence levels, we considered an easier or harder task
by using only high or low coherence levels (black versus red, Fig. 7b).

As expected, the Cx-CD synaptic efficacy corresponding to optimal
reward is shifted to a larger value (that is, the decision threshold is
lower) when the task is easy, and the opposite is true when the task is
hard (Fig. 7c). This result demonstrates that by adjusting the Cx-CD
synaptic efficacy, the network is potentially capable of adapting to the
statistics of a particular natural sensory environment in order to
maximize harvested reward.

DISCUSSION

In this paper we presented a multimodule model for the complete
computational process in a reaction time task: integration of informa-
tion by ramping neural activity in the cortex (Cx), detection of
threshold crossing by an all-or-none burst signal in the the superior
colliculus (SC), and threshold tuning by cortico-striatal synapses in the
basal ganglia (BG). In our model, the ramping slope of cortical activity
is negatively correlated with the decision time in single trials, consistent
with physiological observations6,8. By contrast, the firing threshold
does not covary with the decision time, similar to that reported in ref. 8
for neurons of the frontal eye field in a countermanding task. Notably,
the decision threshold has a small variability that is the same even as the
mean and s.d. of the decision time increase considerably with decreas-
ing coherence. Therefore, the variability of decision time is primarily
due to that of ramping slope, as a result of the stochastic spike
discharges of cortical neurons.

The biophysically constrained model allows us to investigate cellular
and synaptic mechanisms of elemental decision computations. In
particular, our results demonstrate a local recurrent circuit mechanism
for burst generation in the superior colliculus that serves to detect
threshold crossing in the upstream cortical network. High-frequency
bursts comparable to those observed in the superior colliculus18,36

require relatively long-lasting excitation that may be facilitated by the
NMDA receptors, consistent with experimental evidence23, and on
delayed feedback inhibition, which, in our model, depends on the
short-term facilitation of excitatory synapses onto GABAergic inter-
neurons. In vitro experiments have shown that in the hippocampus and
neocortex, certain subtypes of GABAergic interneurons receive
excitatory input via unreliable but strongly facilitating synapses37,38.
Our model suggests that this would be a desirable feature of feedback
inhibition in the superior colliculus as well.

Using the phase plane analysis, we show that in our model there is a
dissociation between threshold detection by the superior colliculus and
threshold control by the caudate nucleus and the SNr in the basal
ganglia. The cortico-striatal connection provides an effective substrate
for threshold modulation, because it determines the cortical drive
needed to activate the caudate nucleus, thereby suppressing the SNr
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Figure 7 Optimization of decision-making process. (a) A maximum reward

rate is achieved by tuning the Cx-CD efficacy. Each point is calculated from a

block of trials with a uniform distribution of coherence levels. The reward rate

R is defined as R ¼ P/T, where P is the average performance and T is the

average trial time duration (see inset for P and 1/T). Error bars indicate s.e.m.

The optimal Cx-CD efficacy that maximizes the reward rate occurs at around

2.6 nS. The maximum reward rate equals 0.537 reward per second, with an

average performance of 84.0% and an average response time of 585 ms
(excluding the intertrial intervals and penalty times). (b,c) The optimal

efficacy depends on task conditions. If we alter the degree of task difficulty

by using different probability distributions of coherence levels (as shown in

b), the optimal synaptic efficacy shifts toward a larger value (3.1 nS) in the

easy task (black) and toward a smaller value (2.0 nS) in the hard task (red)

(as shown in c). Correspondingly, the optimal decision threshold is lower for

an easy task and higher for a difficult task. To visualize the relationship

between the reward rate and cortico-striatal efficacy, we fitted data in a

and c with cubic polynomials (solid curves).
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and releasing the superior colliculus from inhibition. The key feature
here is the steep slope of the SNr trajectory (Fig. 5a), which helps the
cortico–basal ganglia pathway to gain a dominant role in controlling
the decision threshold. This steep slope is consistent with the observa-
tion that during behavioral tasks, the firing rate of a subclass of SNr
(pausing) neurons drops markedly right before a saccade34,35. As long
as the superior colliculus is not disinhibited, it is more difficult to
trigger a saccadic eye movement, except for when a powerful, salient
stimulus is presented. Hence, the threshold of cortical input to trigger a
burst in the superior colliculus is relatively insensitive to the efficacy of
cortico-collicular synapses. This is no longer the case when the basal
ganglia pathway is disabled (Supplementary Fig. 1 online). Functional
implications of this dissociation can be appreciated by noting that burst
neurons in the intermediate layer of the superior colliculus receive a
convergence of inputs from many sources, including the LIP, frontal
and supplementary eye fields, and primary visual cortex via the
superficial layer in the superior colliculus. Without a separate control
circuit, burst generation in the superior colliculus, and hence saccadic
eye movement, would be susceptible to constant sensory perturbations
and small fluctuations in the input. The CD-SNr circuit in the basal
ganglia constitutes a mechanism of threshold setting for the superior
colliculus, globally for all types of afferent inputs.

Our model is minimal in its architecture and biophysical detail, and
can be extended in future studies in several ways. For instance, our
model does not include ‘fixation neurons’ in the superior collicu-
lus36,39, which exhibit a firing pattern similar to that of SNr cells and are
believed to inhibit burst cells in the superior colliculus (and could thus
provide an additional mechanism for threshold control). Moreover, the
inclusion of such fixation neurons could allow our model to simulate
the delayed response version of the random-dot discrimination task6.
The idea is that during a mnemonic delay period interposed between
stimulus presentation and saccadic response, the presence of a fixation
cue maintains a relatively high activity level in fixation neurons; these
cells in turn suppress burst cells in the superior colliculus. Hence, after a
decision has been made during stimulation and the choice has been
stored in working memory by persistent cortical activity, neurons in the
superior colliculus remain inhibited across the delay. At the end of the
delay period, the disappearance of the fixation cue leads to a decrease of
fixation neural activity; the burst cells are now released from inhibition
and generate a burst of spikes signaling the motor response. This
scenario deserves to be tested in future studies. We also did not take
into account ‘buildup/prelude’ neurons, which fire sparsely with
ramping activity before the saccade onset18,36. Buildup activity has
been observed in the superior colliculus during the random-dot
direction-discrimination task with a fixed stimulus duration40. It
remains to be seen whether it occurs in the reaction time version of
the task as well and, if so, whether it represents the monkey’s motor
preparation for an incoming saccade rather than time integration of
sensory information.

Moreover, in the present study we did not consider direct inputs
from the retina to the superior colliculus (via the superficial layer of the
superior colliculus), which (if strong enough) can trigger burst dis-
charges in the intermediate layer of the superior colliculus without
disinhibition along the basal ganglia pathway. In a difficult perceptual
decision task, such strong inputs are either absent (by experimental
design) or present (in more realistic situations), but their effects on
burst cells must be suppressed somehow (for example, inhibited by SNr
cells or fixation neurons; ref. 39) until sufficient evidence is accumu-
lated and a perceptual judgement is reached. The inner working of such
control processes is a topic beyond the scope of the present paper and is
worth studying in future work.

Concerning the basal ganglia circuit, striatal output neurons display
Up and Down states of membrane potential41, which were not
explicitly incorporated in the simulations reported here. However,
our model does assume that striatal cells have a fairly hyperpolarized
resting state and require a critical level of cortical excitation to trigger
significant spike discharges. Thus the model is consistent with a
scenario in which striatal output neurons are endowed with Up and
Down membrane potentials and typically reside in the Down state at
rest. We did check this possibility by including membrane bistability in
CD cells, and we found that the network behavior, as assessed by the
psychometric and chronometric functions, was not substantially
affected by this single-cell membrane property (Supplementary
Fig. 2 online). It has been proposed that membrane bistability of
striatal cells is modulated by dopamine42, and its effects on signal
processing (and on threshold tuning in particular) remain to be
assessed. Furthermore, in addition to the direct CD-SNr pathway, the
striatum also sends its output through an ‘indirect’ pathway that
extends from the CD to the external segment of the globus pallidus
and thence to the subthalamic nucleus and the SNr (refs. 25,28). The
indirect pathway is likely to produce global inhibition of undesired
saccades43,44, but it is unknown and deserves to be examined whether,
in interplay with the direct pathway, the indirect pathway also has a role
in the modulation of a decision threshold.

It has been suggested that the rate of reward harvest can be tuned by
varying a decision threshold11,15, but how this may be accomplished in
the brain remains an open question. Our results identify a specific
anatomical substrate at the cortico-striatal (Cx-CD) synapses. Strong
cortico-striatal efficacy produces a low decision threshold, which
generates quick responses but poor performance, whereas weak
cortico-striatal efficacy yields a high decision threshold, which gener-
ates slow responses but better performance. Our model predicts that
the firing rate of cortical decision neurons at the onset of the saccade
should vary adaptively in behavioral tasks that require a trade-off
between speed and accuracy, a prediction that can be tested experi-
mentally. In a human behavioral study using the random-dot discri-
mination task16, subjects were instructed to aim at producing a mean
reaction time of 0.5 s, 1 s or 2 s. Using the bounded diffusion model to
fit the behavioral data, the authors found that the bound height, as well
as the average speed and accuracy, changed when the subjects were
instructed to respond with different speeds. Note that the instruction
provided additional information that the subject may have used, such
as an estimate of interval timing (0.5 s, 1 s or 2 s), that our model does
not incorporate. Nevertheless, we found that our model could repro-
duce the observations for the speed instructions of 0.5 s and 1.0 s: the
behavioral performance and reaction time corresponded to those
predicted by our model for cortico-striatal efficacies of 3.8 nS and
0.8 nS, respectively (Supplementary Fig. 3 online).

Our model suggests that as a result of the speed-accuracy trade-off,
the reward rate shows an inverted-U–shaped dependence on cortico-
striatal synaptic efficacy: a maximum reward rate occurs at an inter-
mediate cortico-striatal efficacy. Furthermore, our model shows that
the optimal cortico-striatal efficacy, or threshold, is adjustable when
the statistics of sensory stimuli in the environment change, a prediction
that can be tested readily in laboratory experiments. Although
the amount of change in the reward rate across different Cx-CD
efficacies looks small (Fig. 7a), the effect can be increased by using
narrower distributions of coherence levels (Fig. 7c). One might
argue that animals can only sense a rough change in the reward rate
and thus can only tune the Cx-CD efficacy to within an approximate
range around the optimal value, not to the exact optimal value.
Nevertheless, our model predictions can be tested by using distinct
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coherence levels, say, 2–10% in one session of trials and 40–50% in
another session.

Our finding of tunable threshold through cortico-striatal synapses is
notable especially in light of the fact that modification of cortico-
striatal connections is strongly modulated by reward signals mediated
by the dopamine system31,32. Therefore, a mechanism for tunable
threshold can be implemented by the cortico-striatal synaptic plasticity
that follows a reward-dependent Hebbian-like learning rule45. More
specifically, the activated cortico-striatal synapses increase their
strength by a small amount in rewarded trials and reduce it in error
trials. Such cortico-striatal synaptic modifications in turn alter choice
behavior and thus the reward rate itself. It will be worth investigating,
within this framework, the optimal reward behavior in terms of
learning induced by the dynamical interaction in the reciprocal loop
between the cortico–basal ganglia system and the dopaminergic reward
system26–28. Moreover, our model endowed with synaptic plasticity
would also lead to threshold modulation across many trials, thereby
providing an explanation of reward-dependent choice bias over
long timescales29,46.

In summary, we have presented a biophysically based network model
that can completely simulate a reaction time task, from the integration
of sensory inputs to threshold detection and tuning. Our model
suggests a parallel circuit mechanism, in which the decision threshold
is detected along the cortico-collicular pathway and tuned through the
cortico–basal ganglia pathway. Our results indicate that the regulation
of decision threshold represents a specific computational mechanism
through which cortico-striatal synaptic plasticity can contribute to
adaptive behavior and to sensorimotor learning in general27.

METHODS
Behavioral task. Our model aims to simulate the random-dot direction-

discrimination task5,6. To be concrete, we assume the direction of coherent

motion to be either rightward or leftward. In our model, two inputs

(presumably from area MT; ref. 47) representing the rightward and leftward

moving dots are fed into CxeR and CxeL, respectively, in the cortical network

(Fig. 1). The firing rate of each input neuron follows a Poisson rate that varies

in time with a Gaussian distribution of mean m. The mean m depends on the

coherence level linearly and follows the equations m ¼ m0 + mA � c¢ for the

preferred direction and m ¼ m0 – mB � c¢ for the nonpreferred direction, where

m0 (20 Hz) is the baseline input, c¢ (between 0% and 100%) is the coherence

level, and mA (60 Hz) and mB (20 Hz) are factors of proportionality. We assume

a synaptic conductance g ¼ 4.2 nS, which represents the product of the number

of MT input connections onto a cortical neuron and the conductance of

individual MT-Cxe synapses. Ref. 47 reported that the population average of

the slopes of MT neuron firing rates as a function of coherence is 3.5 times

higher in the preferred direction than in the nonpreferred direction47 (or mA B
3.5mB). Given the fact that mA and mB for individual MT neurons follow broad

distributions47, our assumption of mA ¼ 3mB is not substantially different from

these observations47. The decision time is defined as the time interval between

the start of the sensory input to Cx and the onset of SCe burst activity. The

response time is the decision time plus a 250-ms-long non-decision time (such

as visual latency and motor response time). A correct trial is defined as a trial in

which the model generates a saccadic burst in the same direction as the

coherent motion.

Large-scale circuit model. Our model includes a cortical network, a superior

colliculus network and a basal ganglia network (Fig. 1). Single neurons are

generally modeled by the leaky integrate-and-fire model, and synaptic

currents are described by realistic gating kinetics (details in Supplementary

Methods online).

The cortical network (Cx) model was adopted from ref. 13. The model

contains two populations (CxeR and CxeL) with recurrent excitation. Each

population contains 240 excitatory neurons and responds to random-dot

motion in one of two opposite directions. The populations compete with each

other through an inhibitory population (Cxi) of GABAergic neurons. The

system exhibits winner-take-all competition: the excitatory population, which

receives a stronger input, has a greater chance of building up its firing rate and

winning the competition. This behavior resembles that observed in the LIP in

the random-dot experiment6. In the present study, we did not use a preset

threshold as in ref. 13. Instead, the cortical network projects to downstream

neurons in the superior colliculus and the basal ganglia.

In the superior colliculus (SC) model, we address the burst-generating

mechanism and the nonlinear response of neurons in the superior colliculus to

external stimuli23. Local excitatory and inhibitory circuits in the superior

colliculus are known to be essential for burst generation21–24. Experimental

studies have shown that burst firing of neurons in the superior colliculus

depends on NMDA receptors23. On the other hand, GABAergic neurons are

widely distributed throughout the superior colliculus48 and presumably under-

lie the observed lateral inhibition in behaving animals39. Based on these

experimental observations, we constructed a three-population model for burst

generation in the superior colliculus (Fig. 1): two populations of 250 excitatory

neurons (SCeR and SCeL) with recurrent excitation through NMDA receptors

and one population of 250 inhibitory neurons (SCi). Each of SCeR and SCeL is

selective for one of the two direction choices18–20,39 and receives inputs from

the corresponding cortical neural population (CxeR or CxeL). The SCi neurons

receive inputs from both SCe populations through NMDA receptors and send

inhibitory feedback to both of them through GABAA receptors39. We further

assume that SCeR-to-SCi and SCeL-to-SCi synapses exhibit short-term facilita-

tion. For the sake of simplicity, we did not explicitly model projections from SC

to the thalamus and back to the cortex49. However, we assume that both SCeR

and SCeL send feedback to all populations in the Cx network to inform the

cortex about the execution of a saccade, and resets the Cx network.

In the basal ganglia (BG) model, we focus on how the basal ganglia

modulates the timing and the performance of decision making. We modeled

the cortico–basal ganglia–superior collicular pathway with two nuclei, CD and

SNr. Each nucleus consists of two populations selective for two alternative

directions of decision choice. Each population contains 250 GABAergic

neurons. CD neurons receive excitatory inputs from Cx through AMPA

receptors and exert inhibition on SNr through GABAA receptors. SNr neurons

exhibit tonic baseline activity with a firing rate around 80 Hz and exert

inhibition on SCe neurons through GABAA receptors. We note that anatomi-

cally it is still not established whether ramping neurons in cortical networks

participate in the cortico-striatal projection. Moreover, physiologically, striatal

neurons in the caudate nucleus are heterogeneous and have been found to

exhibit movement-, vision- and/or memory-related activities. Nevertheless,

some neurons in the caudate nucleus have been reported to display ramping

activity during delay periods in certain saccade tasks50. Therefore, in addition

to traditionally suggested movement neurons, it is likely that the caudate

nucleus also receives inputs from other types of neurons (including ramping

neurons) in upstream cortical networks.

Details of the model and parameter values for the connections within and

between each of three networks are given in Supplementary Methods.

Phase plane. The state boundary in the phase plane (Fig. 5a) is constructed by

the following procedure. We remove CD from the network and hold the SNr

firing rate at a given value. Then we slowly increase Cx firing rate from 0 Hz

until it reaches a critical value that generates a burst in SCe. We run 200 trials

and calculate the mean critical value of Cx firing rate, which represents one

point on the state boundary at the given SNr firing rate. We plot the entire

boundary by repeating this procedure with different SNr firing rates. The

system trajectory is produced by removing SC from the network and slowly

increasing Cx firing rate from 0 Hz until SNr firing rate drops to 0 Hz. The

system trajectory is plotted using the SNr response as a function of Cx firing

rate averaged over 200 trials.

Reward rate. The reward rate R is defined by R ¼ P/T, where P is the

performance and T the average trial time duration11. The performance P,

defined as the percentage of correct decision choice in a block of trials, is given

by P ¼
PN

i¼1

nipi; where i denotes the index for the coherence level, ni is the

percentage of trials with the coherence level i, and pi is the probability of
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making a correct choice. The average trial time T is calculated as

T ¼
XN

i¼ 1

ni½ piðti + tL + t ITIÞ+ ð1 � piÞðti0 + tL + t ITI + tpenaltyÞ�

where ti is the average decision time of correct trials, t¢i is the average decision

time of error trials, tL is the non-decision time (assumed to be 250 ms), tITI

(0.5 s) is the intertrial interval, and tpenalty (2.5 s) is the penalty time added after

an error trial. In the simulation, we used six coherence levels, i ¼ 1–6, with

coherence of 0%, 3.2%, 6.4%, 12.8%, 25.6% and 51.2%, respectively. In

Figure 7a, each point was calculated using equal probability for all six

coherence levels (ni ¼ 1/6 for all i). In Figure 7b,c, {ni} ¼ {0, 1/3, 1/3, 1/3,

0, 0} for the more difficult task (red curves) and {ni} ¼ {0, 0, 0, 1/3, 1/3, 1/3} for

the easier task (black curves). For each value of Cx-CD efficacy, ti and pi were

calculated based on Ni number of trials, where {Ni} ¼ {1,200, 2,400, 1,800,

1,800, 600, 600}. We used a larger number of trials in the cases of lower

coherence levels due to the larger variation in ti and pi.

Note: Supplementary information is available on the Nature Neuroscience website.
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