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Abstract – We study dynamical aspects of sleep micro-architecture. We find that sleep dynamics
exhibits a high degree of asymmetry, and that the entire class of sleep-stage transition pathways
underlying the complexity of sleep dynamics throughout the night can be characterized by two
independent asymmetric transition paths. These basic pathways remain stable under sleep
disorders, even though the degree of asymmetry is significantly reduced. Our findings demonstrate
an intriguing temporal organization in sleep micro-architecture at short time scales that is typical
for physical systems exhibiting self-organized criticality (SOC), and indicates nonequilibrium
critical dynamics in brain activity during sleep.

Copyright c© EPLA, 2013

Introduction. – Over the last decades sleep research
has focused on how different factors affect sleep, and how
sleep influences physiologic and cognitive functions [1].
Phenomenological studies at the system level, based on
EEG and other polysomnographic recordings, have been
used to identify sleep stages and to quantitatively assess
sleep. Sleep is governed by interactions between networks
of neurons located in many brain regions [2,3], that are
described to act as a sleep-wake switch producing stable
sleep and wakefulness [4,5]. Oscillatory models have been
proposed to quantify the quasi-cyclic patterns in sleep
dynamics over time scales of hours and days, accounting
for homeostatic, circadian and ultradian influences [6–11].
However, the complex dynamics of sleep-stage transitions
and arousals which occur at time scales of seconds to
minutes during healthy sleep and constitute the sleep
micro-architecture are not yet understood.

Here we ask whether the seemingly irregular sequences
of transitions between sleep stages at short time scales
(fig. 1) can be represented by several basic and stable
sleep-stage transition pathways. We propose a transition
probability matrix approach to probe asymmetry proper-
ties of sleep-stage transitions. We also analyze the proba-
bility of remaining in a given sleep stage. We investigate
how these statistical properties change under sleep disor-

(a)E-mail: plamen@buphy.bu.edu

ders which affect the sleep structure. Our findings indicate
that asymmetry is a fundamental feature of sleep-stage
transitions, and that at short time scales sleep dynamics
are not homeostatic but exhibit a degree of self organiza-
tion typical for physical systems out of equilibrium.

Data. – We analyze 48 healthy subjects and 48 age-
matched patients with obstructive sleep apnea (healthy:
50.9 ± 9.4 years, sleep apnea: 51.3 ± 8.9 years). Data
were collected in eight European sleep laboratories par-
ticipating in the SIESTA project [12]. For each sub-
ject, polysomnographic recordings including the electroen-
cephalogram (EEG), electrooculogram (EOG), and sub-
mental (chin) electromyogram (EMG) were taken for two
consecutive nights. Based on Rechtschaffen and Kales cri-
teria, signals were scored visually in epochs of 30 seconds
into six stages: wakefulness, rapid-eye-movement (REM)
sleep, and non-rapid-eye-movement (NREM) sleep stages
including light sleep 1 and 2, and deep sleep 3 and 4. The
average sleep time, defined as the interval between the
start of the first sleep stage and the end of the last sleep
stage, is 7.6 h for both healthy and sleep apnea groups.

NREM stage 3 has polysomnographic characteristics
similar to those of stage 4, but very different from those
of stages 1 and 2. Therefore, to simplify the analysis, we
group light sleep stages 1 and 2 into a single light sleep
stage, and deep sleep stages 3 and 4 into a single deep sleep
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Fig. 1: Typical profiles of sleep-stage transitions during noctur-
nal sleep: (a) healthy, and (b) sleep apnea subject. In addition
to ≈ 90–110 min ultradian cycles, there are a large number of
rapid sleep-stage transitions without apparent periodicity. The
sleep apnea subject experiences fragmented sleep, and shows a
much larger number of rapid sleep-stage transitions and brief
arousals than healthy subjects.

stage. We denote the stages REM, light sleep, deep sleep,
and wake as R, L, D, and W , respectively. In our analyses
we use data from the second night only, since subjects are
better habituated to the laboratory environment during
the second night of sleep.

Asymmetry and pathways in sleep-stage tran-

sitions. – Let N be the total number of all sleep-stage
transitions recorded from a subject during the entire noc-
turnal sleep period, and Nkℓ be the number of transitions
from sleep stage k to sleep stage ℓ. We define a transition

probability matrix
←→
T with elements Tkℓ = Nkℓ/N , which

quantify the probability of having a k → l transition dur-
ing the entire sleep period. If the probability of transition
from stage k to stage ℓ, k → ℓ equals the probability of the
transition ℓ → k, i.e., Tkℓ = Tℓk, the transition between
stages k and ℓ is “symmetric” (fig. 2(a)). Note that this
definition does not require that a transition k → ℓ is
immediately followed by a transition ℓ → k; intermediate
transitions are allowed. If Tkℓ �= Tℓk the transition
between stages k and ℓ is “asymmetric” (fig. 2(b), (c)).

We next present the probability matrix
←→
T of sleep-

stage transitions in the following form: Each pair of matrix
elements Tkℓ and Tℓk is expressed in terms of their mean
Mkℓ = (Tkℓ+Tℓk)/2 and difference δkℓ = (Tkℓ−Tℓk). Since
the differences δkℓ quantify the degree of asymmetry in the
transitions between sleep stages k and ℓ, δkℓ represent the

asymmetry terms in the transition matrix
←→
T (eq. (1)).

When the asymmetry terms δkℓ = 0 for all pairs of sleep

stages k and ℓ, then the transition matrix
←→
T is symmetric.

See eq. (1) on top of the next page

The elements of the transition matrix
←→
T have to satisfy

several conditions:

i) Since
←→
T is a probability matrix, the sum of all

elements Tkℓ has to be equal to one:
∑

k,ℓ Tkℓ = 1.
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Fig. 2: (Colour on-line) Schematic examples of sleep dynamics
with different types of sleep-stage transition pathways. (a)
Completely symmetric transitions: a transition from stage k to
stage ℓ is always accompanied by a transition from stage ℓ back
to stage k, e.g., the pathway shown in the rectangular box. (b)
Completely asymmetric transitions: a transition from stage k

to ℓ is not followed by a transition from ℓ to k. Such transition
path involves asymmetric transitions between at least three
sleep stages. Two basic asymmetric pathways, Path I (L →
R → W → L), and Path II (L → D → W → L), are shown
in the ovals. (c) Partially asymmetric transitions: for some
pathways, transitions from stage k to ℓ are accompanied by
transitions from ℓ to k (example shown in the rectangular box),
while for other pathways, transitions from stage k to ℓ are not
followed by a transitions from ℓ to k (ovals). All transitions
between L and D, some of the transitions between L and R,
and some of the transitions between L and W are symmetric
in this example. According to our observations, sleep-stage
transitions in human sleep are partially asymmetric.

ii) The sum of probabilities of entering a given sleep
stage ℓ from all other sleep stages k has to equal the sum
of probabilities of transferring from that sleep stage ℓ to
all other stages k (otherwise one could not enter or leave
the sleep stage ℓ). Thus, the sum of the matrix elements
Tkℓ in each row k has to be equal to the sum of the matrix
elements in each column ℓ = k. This leads to the following
three relations for the asymmetry terms δkℓ:

δRW + δLW + δDW = 0, (2)

−δRW + δLR + δDR = 0, (3)

−δLW − δLR + δDL = 0. (4)

When these three relations are met, the sum over the

fourth row in
←→
T automatically equals the sum over the

fourth column, i.e., δDW + δDR + δDL = 0.
The above relations completely quantify the asymmetry

properties of the transition matrix
←→
T . Since there

10008-p2
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W R L D W R L D

←→
T ≡

W
R
L
D

⎡

⎢

⎢

⎣

0 TWR TWL TWD

TRW 0 TRL TRD

TLW TLR 0 TLD

TDW TDR TDL 0

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

0 MRW − δRW /2 MLW − δLW /2 MDW − δDW /2
MRW + δRW /2 0 MLR − δLR/2 MDR − δDR/2
MLW + δLW /2 MLR + δLR/2 0 MDL − δDL/2
MDW + δDW /2 MDR + δDR/2 MDL + δDL/2 0

⎤

⎥

⎥

⎦

.

(1)

are three relations for six asymmetry terms δkℓ, only
three of these terms can be independent. Hence, one
can completely quantify the degree of asymmetry in the
complex dynamics of sleep-stage transitions throughout
the night using only three asymmetry terms.

As an example, let us consider three potential scenarios
for the dynamics of sleep-stage transitions (fig. 2).

1) Completely symmetric dynamics: Throughout the
sleep period, each transition from stage k to stage ℓ is
always accompanied by a transition from stage ℓ to k,
even when the transition ℓ → k does not immediately
follow the transition k → ℓ (fig. 2(a)). This holds for each
pair of sleep stages k and ℓ, provided there are transitions
between them. Such dynamics result in Tkℓ = Tℓk for all
matrix elements. Therefore, all six asymmetry terms δkℓ =

0, indicating a completely symmetric matrix
←→
T and a

completely symmetric dynamics of sleep-stage transitions.

2) Completely asymmetric dynamics: Throughout the
sleep period, each transition from stage k to stage ℓ is
not accompanied by a reverse transition from stage ℓ to
k (fig. 2(b)). From eq. (1) this yields δkℓ/2 = Mkℓ for
all matrix elements. Thus, all asymmetry terms δkℓ take
maximum possible values indicating a completely asym-

metric transition matrix
←→
T and a completely asymmetric

dynamics of sleep-stage transitions.

3) Partial asymmetric dynamics: In fig. 2(c) we
show one possible type of a asymmetric transition
path: L → R → W → L. In this local path, the transition
L → R is not accompanied by a transition R → L,
suggesting that TLR > TRL, and thus δLR > 0. This
asymmetric transition path also leads to asymmetry in the
transitions R ↔ W and L ↔ W , yielding TRW > TWR

and TWL > TLW , respectively. Therefore, in addition to
δLR > 0, the asymmetric transition path L → R → W →
L also leads to δRW > 0 and δLW < 0. Because in fig. 2(c)
we allow for stages D to transfer only to stage L and not
to other sleep stages, δDW = δDR = 0. Further, because
the transitions D ↔ L are symmetric throughout this
example, we have δDL = 0. From eqs. (2), (3) and (4), we
obtain δRW = −δLW = δLR. Thus, all three asymmetry
terms δRW , δLW and δLR are equal measures, and each one
of them is sufficient to quantify the asymmetric transition
path L → R → W → L shown in fig. 2(c). Since in this
example the transition dynamics are characterized by both
asymmetric and symmetric transitions, this is a case of
partially asymmetric dynamics of sleep-stage transitions.

Results. – We calculate the matrix
←→
T for each healthy

subject. Group-averaged values for the matrix elements
Tkℓ are presented in table 1(a). For the asymmetry

terms {δkℓ} in the transition matrix
←→
T we obtain the

following group-averaged values: {δkℓ} ≡ {δRW , δLW ,
δLR, δDW , δDR, δDL} = {0.04,−0.06, 0.04, 0.02, 0,−0.02}
(fig. 3(a)).

We find that for all varieties of sleep-stage transitions,
the empirically observed asymmetry transition terms
{δkℓ} can be obtained by a linear combination of two basic
asymmetric transition paths:

Path I: L → R → W → L

with {δkℓ} = {p1,−p1, p1, 0, 0, 0} and p1 ≈ 0.04;

Path II: L → D → W → L

with {δkℓ} = {0,−p2, 0, p2, 0,−p2} and p2 ≈ 0.02.
We note that the combination of Path I and Path II

is not a unique solution to the empirically observed {δkℓ}
values. For example, a path D → L → R → W → D
with {δkℓ} = {p1, 0, p1,−p1, 0, p1}, where p1 ≈ 0.04,
combined with another path D → W → L → D with
{δkℓ} = {0,−p2, 0, p2, 0,−p2} and p2 ≈ 0.06, also lead
to the empirically observed δkℓ. However, the transition
W → D that is involved in the path D → L → R →
W → D, rarely occurs (probability matrix element TWD <
1%) in the sleep-stage transition data (table 1(a)), thus
reducing this solution to Path I above, and rendering
such a solution redundant. Similarly, all other solutions
to the observed {δkℓ} are redundant because they involve
transitions which do not (or very rarely) occur in the data.
Thus, all combinations of sleep-stage transition pathways
during the entire sleep period can be reduced to the two
basic paths Path I and Path II.

We next obtain the transition probability matrix
←→
T

for the sleep apnea group (table 1(b)). We find that
sleep apnea subjects exhibit qualitatively similar asym-
metry properties in sleep-stage transitions to those of
healthy subjects. However, all asymmetry terms {δkℓ} ≡
{δRW , δLW , δLR, δDW , δDR, δDL} = {0.02,−0.03, 0.02,
0.01, 0,−0.01} have approximately 50% lower values for
the sleep apnea group compared to the healthy group
(fig. 3), indicating significant reduction in the degree of
asymmetry in sleep-stage transitions with sleep apnea.
The asymmetry terms {δkℓ} for the sleep apnea group
are represented by a linear combination of two arrays

10008-p3
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Table 1: Group-averaged transition matrix
←→
T (eq. (1)) of

sleep-stage transitions for (a) healthy and (b) sleep apnea
group. The matrix elements Tkℓ represent the probability
(group mean ± standard error) for a transition from stage k to
stage ℓ (Tkℓ are rounded to values > 10−2, i.e., an accuracy of
up to 1%). 〈N〉 indicates the group average of the number of
sleep-stage transitions per subject per night.

(a) Healthy Group: 〈N〉 = 97.5 ± 18.4
W R L D

W – 0.01 ± 0.002 0.24 ± 0.010 0.00 ± 0.001
R 0.05 ± 0.005 – 0.07 ± 0.006 0.00 ± 0.000
L 0.18 ± 0.009 0.11 ± 0.007 – 0.16 ± 0.010
D 0.02 ± 0.002 0.00 ± 0.001 0.14 ± 0.010 –

(b) Sleep Apnea Group: 〈N〉 = 122.8 ± 39.6
W R L D

W – 0.02 ± 0.004 0.25 ± 0.014 0.00 ± 0.001
R 0.04 ± 0.004 – 0.10 ± 0.011 0.00 ± 0.000
L 0.22 ± 0.014 0.12 ± 0.012 – 0.11 ± 0.010
D 0.01 ± 0.002 0.00 ± 0.001 0.10 ± 0.010 –

{δkℓ} = {p1,−p1, p1, 0, 0, 0} with p1 ≈ 0.02, and {δkℓ} =
{0,−p2, 0, p2, 0,−p2} and p2 ≈ 0.01. Thus, the complex
dynamics of sleep-stage transitions in sleep apnea subjects
can be represented by the same two basic asymmetric
transition paths as found for the healthy subjects, Path I:
L → R → W → L, and Path II: L → D → W → L.

Because the asymmetric transition Path I, L → R →
W → L, is fully described by the three equal probability
measures δRW = −δLW = δLR = p1 (see the case of
Partial asymmetric dynamics above), the number n1 of
occurrence of Path I per night is given by n1 = p1 ×〈N〉,
where 〈N〉 is the average total number of sleep-stage
transitions per subject per night. For healthy subjects we
find an average of n1 ≈ 4, while for sleep apnea subjects
n1 ≈ 2.5, indicating a significant reduction with sleep
apnea in the occurrence of Path I per subject per night.
Similarly, the asymmetric transition Path II, L → D →
W → L, is fully described by the three equal probability
measures −δLW = δDW = −δDL = p2, and thus the
number n2 of occurrence of Path II per night is given by
n2 = p2 × 〈N〉. Healthy subjects have an average number
of n2 ≈ 2, which is significantly higher than n2 ≈ 1.2 for
the sleep apnea subjects. While sleep apnea subjects show
the same basic sleep-stage transition pathways, Path I

and Path II, as observed in healthy subjects, the number
of occurrence of these basic transition paths in sleep
apnea is significantly reduced, leading to a decrease in the
asymmetry of the sleep-stage transitions.

Next we empirically test whether the two basic asym-
metric transition paths, Path I and Path II, which we
found to underlie sleep dynamics are indeed independent,
and thus a linear combination of them can fully describe
the variety of sleep-stage transition pathways throughout
the night. To that end, we obtain the probability measures
p1 = δRW and p2 = δDW for each individual subject, and
we calculate the correlation coefficient between these two
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Fig. 3: (Colour on-line) Group-averaged asymmetry terms

δkℓ of the transition matrix
↔

T for healthy and sleep apnea
subjects quantify the degree of asymmetry for all transitions
between sleep stages k, ℓ ∈ {W, R, L, D}. Error bars show
the standard deviation. A significant reduction for all δkℓ

terms in sleep apnea subjects indicates loss of asymmetry in
sleep-stage transitions (pairwise comparison between healthy
and sleep apnea subjects for each term δkℓ by non-parametric
Mann-Whitney Rank test yields p < 0.03). The terms δkℓ

are obtained from the matrix elements Tkℓ values in table 1
calculated with accuracy 10−5.

measures for the entire group of healthy and sleep apnea
subjects. We find that the Pearson product-moment
correlation coefficient between p1 and p2 is ρ(p1, p2) =
−0.13 for the healthy group and ρ(p1, p2) = −0.02 for
the sleep apnea group, indicating that these two types of
asymmetric transition paths are mutually independent.

Since the probability measures p1 and p2 quantify the
number of occurrence n1 and n2 of the basic sleep-stage
transition pathways Path I and Path II respectively, we
introduce a coefficient of asymmetry A as a function of
p1 and p2 to define the degree of asymmetry in sleep-
stage transitions for each subject in our database. Because
the two basic asymmetric transition paths Path I and
Path II are independent, we can define

A ≡
∑

PathI

|δkℓ| +
∑

PathII

|δkℓ|, (5)

which quantifies the overall percentage of independent
asymmetric transitions during nocturnal sleep. For a
completely asymmetric sleep comprised only of Path I

and Path II transitions, the asymmetry coefficient A = 1,
while for a completely symmetric sleep dynamics, A = 0.
From eqs. (2), (3) and (4) we can express the coefficient
of asymmetry as

A = 3 × (|δRW | + |δDW |) = 3 × (p1 + p2). (6)

Histograms of the asymmetry coefficient A obtained for
each individual subject in the healthy and sleep apnea
group are shown in fig. 4. For healthy subjects, the

10008-p4
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Fig. 4: (Colour on-line) Distribution of the coefficient of
asymmetry A for a group of healthy subjects (mean ± stddev:
0.17 ± 0.08), and a group of sleep apnea subjects (0.11 ±
0.06). Healthy subjects exhibit a significantly higher degree
of asymmetry in sleep dynamics (Mann-Whitney Rank test:
p < 0.001 indicating a significant difference between the two
distributions).

group average A obtained from the histogram in fig. 4
is A = 0.17, which is significantly higher than the group
average A = 0.11 for the sleep apnea group. This clearly
indicates that while healthy sleep dynamics exhibit a
significant degree of asymmetry associated with sleep-
stage transitions, there is a loss of asymmetry in sleep
under pathologic perturbations such as sleep apnea.

In order to obtain a more complete picture of sleep
dynamics, we need information not only about the prob-
ability of transition between two sleep stages (quantified
by the matrix elements Tkℓ, eq. (1) and table 1) but also
the probability of a subject remaining in the same sleep
stage. To this end, we study the probability distributions
of sleep-stage durations.

The cumulative probability distribution Pk(d) is defined
as Pk(d) ≡

∫

∞

d
pk(r)dr, where pk(d) is the probability

density function for the occurrence of a given sleep stage k
with a duration d. We calculate the cumulative probability
distribution for each subject, and then we obtain the
average cumulative probability distribution Pk(d) for the
healthy and sleep apnea group.

We find that for healthy subjects, the duration of
wake and arousal periods follows a power-law distribu-
tion, PW (d) ∝ d−α, indicating a unique scale-invariant
organization (no characteristic time scale) of arousal and
wake states during sleep. This temporal organization
spans over time scales from 30 s to 30 min, and relates
to the underlying neuronal mechanisms of sleep regulation
[13–16]. One possible hypothesis is that under pathologic
perturbation, such as sleep apnea, alterations in the sleep
regulatory mechanisms would lead to a breakdown of the
scale-invariant organization in the duration of arousal and
wake states. However, we find that this scaling behavior
is preserved in sleep apnea subjects, where arousal and
wake durations also follow a power-law distribution over a
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Fig. 5: Cumulative probability distributions of wake (arousal)
and sleep-stage durations for the healthy and sleep apnea
groups. (a) The distributions PW (d) of arousals and wake
durations follow a power law with scaling exponent α. In
contrast, the distributions of durations of (b) REM sleep
PR(d), (c) light sleep PL(d), and (d) deep sleep PD(d) decay
exponentially with time constant τ .

broad range of time scales, although sleep apnea subjects
have high degree of sleep fragmentation. This power-
law behavior is characterized by a scaling exponent α =
1.28 ± 0.03 for the sleep apnea group that is significantly
larger than α = 1.11±0.05 for the healthy group (fig. 5(a)).

In contrast to arousal and wake durations, we find that
the probability distributions of all sleep-stage durations
exhibit an exponential behavior (figs. 5(b), (c) and (d)).
Further, we find that the exponential distributions of
sleep-stage durations have a characteristic time scale,
quantified by a time constant τ , that increases from REM
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to light and deep sleep but remains practically identical
for both healthy and sleep apnea subjects.

Sleep-stage transitions are typically described as fol-
lowing a cyclic pattern of 90–120 min, from light to
deep sleep and REM with several brief arousals scattered
within REM or light sleep. This traditional view does not
address asymmetry in the transitions —for example, sleep
cycles can theoretically be constructed using completely
symmetric transition paths as shown in fig. 2(a). However,
our empirical analysis shows that asymmetry is a basic
feature of sleep dynamics.

Our findings of a power-law distribution of wake and
arousal durations and exponential distribution of the
durations of light sleep, deep sleep and REM, indicate a
unique coexistence of both scale-invariant (no characteris-
tic time scale) and exponential (with a characteristic time
scale) processes as an output of a single sleep regulatory
mechanism at the system level that has not been observed
in other integrated physiological systems under neural
regulation. Such coexistence of scale-invariant and scale-
specific processes is well described by a physiologically
motivated biased diffusion model [13]. The dynamics
we observe resemble the features of certain physical sys-
tems out of equilibrium exhibiting self-organized criticality
(SOC) [17], where quiet periods following an exponential
law are interrupted by recurring active periods having
scale-invariant power-law characteristics for their size and
duration; and where triggering of frequent active periods
over a broad range of time scales [18] is an essential com-
ponent in the self-organization of the system, needed to
maintain its critical state [13,19,20]. Notably, physical sys-
tems exhibiting SOC are also characterized by asymmetry
in the transitions between quiet states and avalanches as
the energy slowly builds up during quiet states toward the
critical point and dissipates rapidly when avalanches oc-
cur. Our analysis shows an intriguing parallel to SOC sys-
tems as both basic asymmetric paths in sleep involve tran-
sitions to and from arousal (active “avalanche”) states.

Our findings raise the hypothesis that brief arousals and
wake states are an integral part of sleep regulation, and
are generated by the same SOC-type mechanism that also
governs sleep-stage transitions.

Conclusion. – We have investigated dynamical as-
pects of sleep micro-architecture utilizing a novel prob-
ability transfer matrix approach and the conceptional
framework of self-organized criticality. Our analyses of
brain dynamics during sleep show that the entire class of
sleep-stage transition pathways that occur throughout the
nocturnal sleep period can be reduced to two basic and
independent transition paths. We demonstrate that sleep
dynamics are characterized by an endogenous asymmetry
in sleep-stage transitions that is universal for all healthy
subjects and breaks down with sleep disorders. Further,
we find that different sleep-stage transitions exhibit a
different degree of asymmetry that is consistent across
subjects. Finally, our findings demonstrate that in con-

trast to the homeostatic equilibrium that describes sleep
at ultradian and circadian time scales of several hours,
sleep micro-architecture at scales from seconds to minutes
exhibits a non-equilibrium behavior of SOC type that is
reminiscent of physical systems at criticality.
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