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The ability to optimize decisions and adapt them to changing environments is a crucial
brain function that increase survivability. Although much has been learned about the
neuronal activity in various brain regions that are associated with decision making, and
about how the nervous systems may learn to achieve optimization, the underlying neuronal
mechanisms of how the nervous systems optimize decision strategies with preference
given to speed or accuracy, and how the systems adapt to changes in the environment,
remain unclear. Based on extensive empirical observations, we addressed the question
by extending a previously described cortico-basal ganglia circuit model of perceptual
decisions with the inclusion of a dynamic dopamine (DA) system that modulates
spike-timing dependent plasticity (STDP). We found that, once an optimal model setting
that maximized the reward rate was selected, the same setting automatically optimized
decisions across different task environments through dynamic balancing between the
facilitating and depressing components of the DA dynamics. Interestingly, other model
parameters were also optimal if we considered the reward rate that was weighted by
the subject’s preferences for speed or accuracy. Specifically, the circuit model favored
speed if we increased the phasic DA response to the reward prediction error, whereas the
model favored accuracy if we reduced the tonic DA activity or the phasic DA responses
to the estimated reward probability. The proposed model provides insight into the roles
of different components of DA responses in decision adaptation and optimization in a
changing environment.

Keywords: perceptual decision, adaptation, speed-accuracy tradeoff, neural network model, corticostriatal circuit,

spike-timing dependent plasticity

INTRODUCTION
To ensure survivability in complex environments, animals need to
adapt to environments that may change with time. For example,
when making decisions, animals have to choose a proper strat-
egy that is optimal for the current situation, such as making quick
but inaccurate decisions vs. making slow but accurate decisions.
However, whether a decision strategy is proper or not may be
subject- and environment-dependent. Indeed, at the behavioral
level, speed-accuracy tradeoff (SAT) has been demonstrated in
humans and animals in various decision experiments (Schouten
and Bekker, 1967; Wickelgren, 1977; Palmer et al., 2005; Chittka
et al., 2009; Balci et al., 2010). Although it has been suggested
that a strategy can be optimized by maximizing the reward rate
(Gold and Shadlen, 2002; Lo and Wang, 2006), several studies
have demonstrated cases in which subjects adopt strategies that
are faster (but less accurate) or slower (but more accurate) than
the ideal one that maximizes the reward rate (Maddox and Bohil,
1998; Chittka et al., 2009; Bogacz et al., 2010).

At the neuronal level, numerous studies have shown correla-
tions between the complex responses of dopamine (DA) neurons
and reward-related information in decision making (Schultz,
2000, 2002; Arias-Carrión et al., 2010; de Lafuente and Romo,
2011). Furthermore, the responses of DA neurons do not simply

depend on the presence of rewards, but also on various task-
related factors such as the expected probability and magnitude
of rewards and reward prediction errors (Hollerman and Schultz,
1998; Schultz, 1999; Kawagoe et al., 2004; Takikawa et al., 2004;
Nomoto et al., 2010). However, how the DA system contributes to
the mechanisms underlying the differential strategy chosen, and
how the animals adapt their decision strategies to changes in the
environment, remain unclear.

At the theoretical level, a number of mathematical models and
neural network models have been proposed to account for deci-
sion behavior (Ratcliff, 1978; Bogacz et al., 2006; Lo and Wang,
2006; O’Reilly and Frank, 2006; Simen et al., 2006; Bogacz and
Gurney, 2007; Roxin and Ledberg, 2008; Wang, 2008; Cohen
and Frank, 2009; Deco et al., 2009; Hong and Hikosaka, 2011).
In particular, a spiking neural network model consisting of an
attractor cortical network for information accumulation (Wang,
2002, 2008; Wong et al., 2007; Wang et al., 2013) and a cortico-
basal ganglia circuit mediating the decision threshold (Lo and
Wang, 2006) have suggested that the threshold can be modu-
lated by the strength of the corticostriatal pathway. Hence, this
has provided insights into how SAT may be implemented in
the neural circuits that perform perceptual decisions. This pre-
diction has been subsequently supported by human functional
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magnetic resonance imaging (fMRI) experiments (Forstmann
et al., 2010).

Despite this progress, we still lack an integrated model, with
sufficient biological detail, that illustrates the neuronal mech-
anisms underlying how individual subjects choose their deci-
sion strategies differently, how their decision strategies adapt to
changing environments, and how detailed DA neuron activity,
including responses to expected reward probability or reward pre-
diction errors, may play a role in behavioral flexibility. Although
reward-dependent plasticity has been incorporated in a num-
ber of rate-based neural network models to account for various
flexible behaviors (Simen et al., 2006; Cohen and Frank, 2009;
Rao, 2010; Bogacz and Larsen, 2011; Wiecki and Frank, 2013),
most of the models either do not address how the subjects adapt
their decisions to changing environments, or were built based on
relatively abstract learning rules that do not include complex real-
time dopamine dynamics and spike-time based plasticity that has
been observed empirically (Suaud-Chagny et al., 1995; Bi and
Poo, 1998; Shen et al., 2008; Nomoto et al., 2010). Some of the
models have been designed for simulating action-selection and
executive control, which may involve very different mechanisms
from the perceptual discrimination that we studied here.

We present a spiking neural circuit model that integrates a
spiking cortico-basal ganglia model (Lo and Wang, 2006) and a
DA system with complex dynamics that is consistent with empir-
ical observations (Suaud-Chagny et al., 1995; Bi and Poo, 1998;
Shen et al., 2008; Nomoto et al., 2010). We demonstrate that dif-
ferent decision strategies that are adopted by different animals can
all be optimal in their own subjective sense which is weighted by
their individual preferences for speed or accuracy. Furthermore,
the interplay between the different temporal components of the
DA dynamics supports the adaptation of the optimal strategies in
response to changes in the environment.

MATERIALS AND METHODS
THE BASIC HYPOTHESIS AND LOGIC OF THE MODEL
In the present study, we did not investigate how a neural net-
work can learn to achieve an optimal decision strategy, which
has been addressed in various modeling studies, and we accepted
that an optimal decision can be achieved by learning. Instead, we
hypothesized that there is not just one, but many different optimal
decision strategies that are weighted by individual’s preferences
for speed or accuracy. Our goal was to study how preferences
were influenced by the detailed activity of the DA system and
how dynamic balancing between different DA effects helped the
subjects to adapt to changes in the environment when making
perceptual decisions.

THE BEHAVIORAL TASK: RANDOM-DOT MOTION DISCRIMINATION
In order to investigate adaptive behavior in perceptual decision
making and its optimization, we used the reaction-time version
of the random-dot motion discrimination task (Newsome et al.,
1989; Shadlen and Newsome, 1996; Roitman and Shadlen, 2002).
In the task, a subject watches a display of randomly moving dots
with a center fixation point and two saccade targets that are
located on the two sides of the screen. A small fraction of the dots
move coherently in one of two possible directions (right or left

in our simulations), and the subject is required to determine the
direction of the coherent movement while fixating on the center
of the screen. The subject needs to make a saccade to the corre-
sponding target (right target for right coherent movements and
left target for the left coherent movements) as soon as a decision
is reached.

The percentage of dots that move coherently is defined
as the coherence level (c′) or motion strength, and it represents
the amount of evidence that is available to the subject during the
decision process. Motion discrimination is easier in trials with
a strong, compared to a weak, motion strength. We tested our
model with two conditions: easy and difficult. The easy condi-
tion consisted only of trials with c′ levels of 12.8, 25.6, and 51.2%,
while the difficult condition consisted only of trials with c′ levels
of 3.2, 6.4, and 12.8%. The trials of the different coherence levels
in each condition were pseudorandomly distributed with equal
probability. The reaction time was defined as the interval between
the start of the sensory input and the time when the subject made
a saccade.

SINGLE NEURON MODEL
Neurons in the circuit model were simulated with the
conductance-based leaky integrate-and-fire model that is
described as follows.

The membrane potential V(t) obeys the following equation:

Cm
dV(t)

dt
= −gL (V(t) − VL) − Isyn(t),

where Cm is the membrane capacitance, gL is the leak conduc-
tance, VL is the resting potential, and Isyn is the total synaptic cur-
rent. When the membrane potential V(t) of each neuron reaches
the threshold Vthreshold = −50 mV, a spike is emitted, and V(t) is
set to the reset potential Vreset = −55 mV for a refractory period
Tr = 2 ms. For inhibitory neurons, we used the following param-
eters: Cm = 0.2 nF, gL = 20 nS, and VL = −70 mV. For excitatory
neurons, we used Cm = 0.5 nF, gL = 25 nS, and VL = −70 mV.
Isyn is the total synaptic current and is given by:

Isyn(t) = gAMPAsAMPA(t) (V(t) − VE)

+ gNMDAsNMDA(t) (V(t) − VE)

1 + [Mg2+]e−0.062V(t)/3.57

+ gGABAsGABA(t) (V(t) − VI)

where (VE (=0 mV) and VI (= −70 mV) are the reversal poten-
tials, [Mg2+] (= 1.0 mM) is the extracellular magnesium concen-
tration, g is the synaptic efficacy, and s is the gating variable. The
subscripts in g and s denote the receptor type. The gating variables
are described by

ds(t)

dt
=

∑
k

δ
(

t − tk
)

− s

τ

for AMPA and GABA receptors and

ds(t)

dt
= α (1 − s(t))

∑
k

δ
(

t − tk
)

− s

τ
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for NMDA receptors, where τ = 2 ms for AMPA, 100 ms for
NMDA, and 5 ms for GABA. δ(t − tk) is the delta function, and
tk is the time of the k-th pre-synaptic spike. The differential equa-
tions were solved numerically by the first-order Euler method
with a time step of 0.1 ms.

THE CORTICO-BASAL GANGLIA NEURAL CIRCUIT OF DECISION
MAKING
The model of the corticobasal ganglia neural circuit used in the
present study was developed based on a previously described
model (Lo and Wang, 2006), which consists of a cortical (Cx) cir-
cuit, a superior colliculus (SC) circuit, and a basal ganglia (BG)
circuit (Figure 1). All parameters in the previous model (Lo and
Wang, 2006) were preserved except for two changes made to CD
neuron-related parameters due to the inclusion of the synaptic

FIGURE 1 | Schematics of the computational model of decision

optimization and adaptation for the random-dot direction

discrimination task. The model is described by a close loop process that
involves a neural circuit based on a dopamine system and a previously
described cortico-basal ganglia circuit model (Lo and Wang, 2006). The
neural circuit receives sensory input, accumulates sensory evidence
(random dot movements), detects the threshold crossing, and then makes
a decision (saccadic eye movements). The outcome of the decision
determines the reward and thereby influences the dopamine system. The
dopamine activity modulates the decision process by changing the Cx-CD
synaptic strength through spike-timing dependent plasticity (STDP). Each
circle represents a population of leaky integrate-and-fire neurons, and the
dopamine system is a functional unit that is modeled by several equations.
Cx, cortex; Cxe, excitatory cortical pyramidal neurons; Cxi, inhibitory cortical
interneurons; CD, caudate nucleus; SNr, substantia nigra pars reticulata;
SCe, superior colliculus excitatory neurons; SCi, superior colliculus
inhibitory neurons. The L and R superscripts denote the neural populations
responding to the left and right stimuli, respectively.

plasticity in the present model. First, we added NMDA recep-
tors to the Cx-to-CD synapses and reduced the conductance for
the AMPA-mediated current on the same synapse accordingly.
Second, we increased the background noise for CD neurons in
order to produce a baseline firing rate of several spikes per second.
The small baseline activity is important for maintaining plasticity
throughout the course of a trial. See Table 1 for the parameters
that were used in the circuit model. Three major neural processes
described below are involved in the model:

(1) Winner-take-all competition for sensory signals in the corti-
cal network: After the stimulus onset, two signals represent-
ing the amount of leftward and rightward dot movements
[presumably from the visual MT area (Britten et al., 1993)]
project to the neural populations CxeL and CxeR in the Cx,
respectively. The two decision populations, CxeL and CxeR,
compete with each other through the inhibitory interneurons
in Cxi. As a consequence, the decision population receiving
the stronger sensory input has a higher chance to accumu-
late its activity (population firing rate) and suppress the
other (Wang, 2002). The activity of the two decision pop-
ulations are sent to the downstream regions (SC and BG)
for further computation. There is a non-selective background
population, CxeBg, that mimics neurons that are selective for
directions other than the two forced-choice alternatives or to
other stimuli that are irrelevant to the present study.

(2) All-or-nothing motor output in the SC: The neural circuit of
the SC is similar to that of the Cx but with two important dif-
ferences. First, the feedback excitation in SCeL and SCeR and
the lateral inhibition between SCi and SCeR/SCeL are much
stronger than those in Cx. Second, the lateral inhibition is
endowed with short-term synaptic facilitation, as described
in Lo and Wang (2006). These differences allow neurons in
the SCeR or SCeL to develop a strong burst of spikes last-
ing for about 50 ms in response to input from the Cx. The
activity resembles what has been observed in burst neurons
in the SC of monkeys during various saccadic eye move-
ment experiments (Munoz and Wurtz, 1995; Sparks, 2002).
In the model, the saccadic eye movement was triggered, or a
decision was made, when the population firing rate of SCeR

or SCeL reached the threshold of 60 spikes/s. In addition to
the excitatory input from the Cx, SCeR, and SCeL were con-
stantly suppressed by feed-forward inhibition from the BG.
Therefore, the Cx could only activate the SCe when it was
disinhibited by the BG.

(3) Threshold-crossing detection and disinhibition: The
SNrLand SNrR in the BG constantly exhibit inhibition over
the SCeL and SCeR in the SC, respectively. This inhibition
can be removed by GABAergic input from upstream caudate
nuclei (CD)L and CDR, which in turn receive inputs from
the decision neurons in the Cx. Therefore, when the activity
in the CxeL (or CxeR) is strong enough to activate CDL

(or CDR), the activated CDL (or CDR) disinhibits the SC
through the SNrL (or SNrR) and allows SCeL (or SCeR) to
respond to input from the CxeL (or CxeR), thus producing
a saccadic eye movement. The activation of the CDL or
CDR indicates the detection of the crossing of the decision
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Table 1 | Parameters of the circuit model.

Population Number of Membrane Background input to Target population (receptor type/strength in nS)

name neurons capacitance (nF) AMPA receptors (frequency

in Hz/conductance in nS)

SCeL 250 0.5 1280/0.19 SCeL(N/1.5), SCi (N/0.7), Cxi (N/0.11), CxeL(N/0.05), CxeR(N/0.05)

SCeR 250 0.5 1280/0.19 SCeR(N/1.5), SCi (N/0.7) Cxi (N/0.11), CxeL(N/0.05), CxeR(N/0.05),

SCi 250 0.2 1280/2.0 SCeL(G/2.5), SCeR(G/2.5)

SNrL 250 0.5 3440/2.0 SCeL(G/2.5)

CDL 250 0.5 400/8.0 SNrL(G/0.6)

SNrR 250 0.5 3440/2.0 SCeR(G/2.5)

CDR 250 0.5 400/8.0 SNrR(G/0.6)

CxeBG 1120 0.5 2400/2.1 CxeBG (A/0.05), CxeBG (N/0.165), CxeL(A/0.043825), CxeL(N/0.14462),
CxeR(A/0.043825), CxeR(N/0.14462) Cxi (A/0.04), Cxi (N/0.13)

CxeL 240 0.5 2400/2.1 SCeL(A/3.5), CDL(N/0.2), CDL(A/0.12), CxeBG (A/0.05), CxeBG
(N/0.165), CxeL(A/0.085), CxeL(N/0.2805), CxeR(A/0.043825),
CxeR(N/0.14462), Cxi (A/0.04), Cxi (N/0.13)

CxeR 240 0.5 2400/2.1 SCeR(A_3.5), CDR(N_0.2), CDR(A_0.12), CxeBG (A_0.05), CxeBG
(N_0.165), CxeL(A_0.043825), CxeL(N/0.14462), CxeR(A/0.085),
CxeR(N/0.2805), Cxi (A/0.04), Cxi (N/0.13)

Cxi 400 0.2 2400/1.62 CxeBG (G/1.3), CxeL(G/1.3) CxeR(G/1.3), Cxi (G/1.0)

threshold. Hence, by varying the corticostriatal (Cx-CD)
synaptic strength, we could change the level of the decision
threshold. Specifically, a stronger Cx-CD strength resulted in
a lower decision threshold, while a weaker strength resulted
in a higher decision threshold.

In the model, the mean spike rate μ of each input to CxeL/CxeR

depended on the motion strength of the stimulus linearly and
followed the equations: μ = μ0 + μA × c′ for the direction of
the coherent motion and μ = μ0 − μB × c′ for the opposite
direction. The variable μ0 (40 Hz) was the baseline input for
the purely random motion, c′ (between 0 and 100%) was the
coherence level that characterized the stimulus motion strength,
and μA (120 Hz) and μB (40 Hz) were the factors of pro-
portionality, based on empirical observations (Britten et al.,
1993).

In each trial, the reaction time was calculated by adding the
decision time with a 250 ms non-decision time. The decision time
was the time interval between the stimulus presentation to the
model and the crossing of the response threshold in SCe neu-
rons. The non-decision time represented the time that was needed
for the sensory processing and the motor output that were not
modeled in the present study.

In a previous study (Lo and Wang, 2006), we demonstrated
that the major determining factor of the threshold is the Cx-
CD synaptic strength and that there exists an optimal strength
that results in the maximum reward rate (averaged number of
rewards acquired per second). The optimal strength was different
for the different task conditions. In the present study, the Cx-
CD synapses were endowed with DA-dependent plasticity, and we
investigated how the neural circuit adapted to the changing task
conditions and remained optimized through the action of the DA
system.

DOPAMINE-DEPENDENT SYNAPTIC PLASTICITY
Previous studies have demonstrated that the activity of DA neu-
rons in the substantia nigra pars compacta (SNc) correlates with
reward prediction error as well as with the stimuli that predict
rewards (Hollerman and Schultz, 1998; Schultz, 1999; Kawagoe
et al., 2004; Arias-Carrión et al., 2010; Nomoto et al., 2010).
In the present study, we studied the behavior of fully trained
subjects and assumed that they had developed a sense of the cor-
relation between the performance (percentage correct) and the
task difficulty (stimulus motion strength) Equation (1) below.
Therefore, the subjects were able to estimate the probability of
receiving a reward at the onset of the motion stimulus and thereby
to evaluate the reward prediction error at the time of reward
delivery/absence. Based on the hypothesis, the DA system in our
model responded to the onset of the motion stimulus with a
magnitude that correlated with the estimated reward probabil-
ity as well as to the reward delivery/absence with a magnitude
that correlated with the reward prediction error (Figure 2A).
The hypothesized DA activity was consistent with a recent mon-
key experiment that used random-dot motion stimuli with a
slightly different paradigm (Nomoto et al., 2010). In the present
study, we did not model the activity of individual DA neurons.
Instead, we directly modeled the DA levels at the Cx-CD synapses.
Specifically, the DA system consisted of the following four
processes:

(1) Estimated reward probability (reward prediction) as a func-
tion of motion coherence. After training, the subjects were
able to estimate the probability of receiving a reward based
on the motion stimuli. In order to simplify the computation
of the model, instead of estimating the reward probability
from the outcome of past trials, we used a preset function
to estimate reward probability pest(c′):
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FIGURE 2 | The dopamine (DA) system and spike-timing dependent

plasticity. (A) Example time courses showing that the DA levels (with
respect to the neutral level, in arbitrary units) exhibit phasic activity in
response to the stimulus presentation (light gray regions) and reward
delivery/absence (dark gray regions). In an easy trial (top), the DA levels
strongly respond to the stimulus presentation due to the large estimated
reward probability but only result in a moderate increase in response to the
reward delivery due to the small reward prediction error. In an erroneous trial,
the absence of reward strongly suppresses the DA levels for the large and
negative reward prediction error. In contrast, in a difficult trial (bottom), the
DA levels increase moderately in response to the stimulus onset due to the

small estimated reward probability, while the levels exhibit strong (or weak)
responses for reward delivery (or absence). (B) The peak levels of the DA
phasic responses to the stimulus presentation (top), reward delivery (middle),
and reward absence (bottom) as functions of the difficulty of the task
(stimulus motion strength). The responses to the stimulus presentation
correlate with the estimate of reward probability, whereas the responses to
the reward delivery and absence correlate with the reward prediction error.
(C) Example STDP kernels (synaptic weight change �w as a function of pre-
and post-synaptic spike time difference) at the peak DA levels for the
stimulus presentations. (D) Example STDP kernels at the peak/bottom DA
levels for the reward delivery/absence.

pest(c′) = 1 − 1

2
e−(c′/β)α , (1)

where α = 1 and β = 0.047. The function has been used to fit
the simulated performance data that are produced by the same
attractor network model (Lo and Wang, 2006). The parameter β

was determined by fitting the equation to the overall performance
of the model. We tested the model with different values of β and
found that the behavioral outcome of the circuit model was not
sensitive to the particular choice of the parameter. These results
suggested that the model worked without the need to accurately
estimate the reward probability.

(2) Phasic DA response to the motion stimulus. DA levels exhibit
a phasic increase after the onset of the motion stimulus based
on the estimated reward probability as we discussed above.
The difference (in arbitrary units) between the peak DA level
of the phasic responses and the neutral level, at which no
synaptic weight change can be induced, correlates with the
estimated reward probability pest(c′) and is given by:

�DAest = cest × 0.15 × r. (2)

where

r = (pest(c′) − 0.5)

0.5
, (3)

and cest = 1. cest represents the sensitivity of the DA system to
reward estimation and can be tuned to test how the sensitivity
influences the decision behavior. Because the value of pest(c′) falls
between 0.5 and 1, the value of r falls between 0 and 1. Combining
the equations for �DAest and pest(c′) described above, we deter-
mined that the peak level of the phasic DA response to the
stimulus onset followed a monotonically increasing function of
the motion strength c′ (Figure 2B, top panel). Based on the obser-
vation of a quick increase in DA levels following DA neuron
activity and slow reuptake (Suaud-Chagny et al., 1995), we fur-
ther assumed that, after the onset of the motion stimulus, DA
levels increase to their peak level exponentially (time constant =
10 ms) for 100 ms and then drop to the baseline level (−0.2)
exponentially (time constant = 150 ms).
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(3) Phasic DA response to reward delivery or absence. After the
decision is made and the reward is received or not received,
the DA neurons exhibit phasic responses that correlate with
the reward prediction error. We modeled the phasic changes
of the DA levels (in arbitrary units) with two separate func-
tions. When a reward is delivered (100 ms after the choice
is made), the DA levels increase briefly to a peak level. The
difference between the peak level and the neutral level is
given by

�DAr = cerr × 0.71 × (1 − r). (4)

When a reward is not received at the end of a trial, the DA levels
decrease briefly to a lower boundary level. The difference between
this lower boundary level and the neutral level is given by

�DAnr = cerr × −1.5 × r − 0.6. (5)

cerr = 1 in both equations. cerr represents the sensitivity of the DA
system to the reward prediction error and is changed when we
test how the sensitivity affects the decision behavior. Considering
that r depends in a linear fashion on the estimated reward prob-
ability that positively correlates with the motion strength c′, we
determined that �DAr monotonically decreases with c′ while
|�DAnr|monotonically increases with c′ (Figure 2B, middle and
bottom panels). Following our assumptions for DA release and
reuptake, we here assumed that, after the reward is delivered,
DA levels increase to their peak level �DAr exponentially, with
a time constant of 10 ms, for a period of 100 ms and then drop
to baseline exponentially, with a time constant of 150 ms. In the
absence of a reward, the DA levels reduce to their lower bound-
ary level �DAnr exponentially, with a time constant of 150 ms,
for a period of 100 ms and then increase to the baseline level
with the same time constant (150 ms). Combining Equations
(1)–(5), we determined the temporal profiles of the DA levels
(Figure 2A): at the stimulus onset, the DA levels increase intensely
for easy trials but weakly for difficult trials. In contrast, when
a reward is delivered in a correct trial, the DA levels increase
weakly for the easy condition but intensely for the difficult condi-
tion. In erroneous trials, the DA levels exhibit a deep recession
for the easy condition but a shallow recession for the difficult
condition.

We note that the DA level changes (�DAest, �DAr , and
�DAnr) and the baseline level discussed above are defined with
respect to the neutral level that represents the concentration of
DA that does not induce synaptic plasticity (see below).

(4) DA modulated spike-timing dependent plasticity (STDP).
Based on the extensive experimental evidence on the
dopaminergic modulation of corticostriatal synapses (Fino
et al., 2005; Calabresi et al., 2007; Pawlak and Kerr, 2008; Shen
et al., 2008; Gerfen and Surmeier, 2011), we hypothesized
that the stimuli and rewards modify the strength of Cx-
CD synapses in the proposed model through DA-modulated
STDP. A recent study has shown that, for D1 receptor-
expressing striatal medium spiny neurons, high DA levels
result in synaptic facilitation in the condition of positive spike

timing (pre-synaptic spikes precede post-synaptic spikes),
whereas low DA levels produce synaptic depression for both
positive and negative spike timing (Shen et al., 2008). Based
on these findings, we assumed that the STDP kernel (synaptic
weight change as a function of spike timing) in our model is
described by the following equations:

�w = wmax × exp

(−�t

τ

)
× �, (6)

� = 2

1 + e−k�DA
− 1, (7)

where �w is the weight change of Cx-CD synapses, wmax sets
the maximum of �w, (τ = 30 ms) is the decay constant of STDP
influence, and �t represents the timing difference between the
post-synaptic spike and the pre-synaptic spike, and is defined by:

�t = time of last post-synaptic spike—time of last pre-
synaptic spike.

� is a term describing the influence of �DA over the ampli-
tude of the synaptic weight change with a parameter (k = 1).
�DA is defined as the relative DA concentration with respect
to the neutral level. A positive �DA results in a positive �,
which leads to synaptic facilitation (�w > 0), whereas a negative
�DA leads to synaptic depression (�w > 0). At the neutral level
(�DA = 0), no synaptic weight change occurs. In addition, wmax

takes different values for different spike-timing conditions and
DA level conditions. Specifically, wmax = 5.0 × 10−4, 2.0 × 10−4,
0, or 2.0 × 10−4 (nS) for �t > 0 and � > 0, �t > 0 and � < 0,
�t < 0 and � > 0, or �t < 0 and � < 0, respectively. The set-
ting leads to a STDP kernel that produces synaptic facilitation
for positive spike timing (�t > 0) at high DA levels (� > 0) but
synaptic depression for both positive and negative timing at low
DA levels (� < 0).

After combining Equations (1)–(7), we obtained a reward-
and stimulus-dependent STDP kernel (Figures 2C,D). After the
stimulus onset, a strong motion stimulus results in a prediction
of high reward probability that also results in strong synaptic
facilitation for positive spike timing, while a weak motion stimulus
results in a prediction of low reward probability that results in weak
synaptic facilitation (Figure 2C). After the decision is made, if the
motion stimulus was strong, the subject strongly expects a reward.
Therefore, the delivery of the expected reward only results in weak
facilitation. In contrast, if the reward is not delivered (due to a
wrong choice), the unexpected reward absence leads to a strong
depression (Figure 2D). However, if the motion stimulus is weak,
the subject does not highly expect a reward, and, therefore, a
reward delivery induces a strong facilitation while reward absence
produces a weak depression (Figure 2D). Following the responses
to the stimulus presentation and reward delivery/absence, the DA
levels decay or increase to the baseline level, DAb, which is set to
be −0.2 with respect to the neutral level. The baseline DA levels
result in a weak depression that slowly brings down the synaptic
strength during the intertrial intervals (ITI).

Finally, we considered the empirical observations in which the
relative change in the synaptic strength was smaller for a stronger
synaptic strength when the synapse was facilitated, whereas
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the relative change remained constant when the synapse was
depressed (Bi and Poo, 1998; van Rossum et al., 2000). In order
to capture this property, for every pre/post-synaptic spike pair, if
the resulting synaptic weight change was facilitation (�w > 0),
we used a simple additive rule, �g = gt + 1 − gt = �w, to update
the efficacy g of the Cx-to-CD synapses, whereas if the resulting
weight change was depression (�w < 0), we used a multiplicative
rule, �g = −g |�w|. The additive updating rule resulted in a per-
centage change that reduced with the synaptic strength (�g/g =
�w/g), while the multiplicative rule resulted in a constant per-
centage change (�g/g = |�w|) (van Rossum et al., 2000). In
the model, the efficacy g of the Cx-to-CD synapses is updated
after each pre- or post-synaptic spike based on the STDP ker-
nel Equations (6) and (7) with the multiplicative or additive rules
stated above. The updates of the synaptic efficacy are long-term
and do not change until the next pre- or post-synaptic spike.

We noted that, due to the noisy background input that each
neuron receives, the weights of the Cx-CD synapses develop het-
erogeneity in the population under the effects of STDP (Kepecs
et al., 2002). In order to avoid the complications that arise from
the heterogeneity and that were outside of the scope of the present
study, we implemented a “mean-field” approach in which each
Cx-CD synapse followed a common synaptic strength that was
updated based on the pre- and post-synaptic spikes that were
pooled from every Cx neuron and every CD neuron.

REWARD RATE FUNCTION
We quantified the quality of the decision by calculating the con-
ventional (objective) reward rate and a subjective reward rate,
which was weighted by the subject’s preference for speed or accu-
racy. The objective reward rate was defined as the average amount
of reward received per unit time (in s) (Gold and Shadlen, 2002):

Ro = pc

TITI + TR + (1 − pc)Tp
= 1 − perr

TITI + TR + perrTp
, (8)

where pc represents the performance (percentage correct), TITI is
the inter-trial interval (500 ms), TR is the mean reaction time, Tp

(2500 ms) is the penalty period that is appended to the end of
every error trial, and perr is the percentage error (= 1 − pc). The
objective reward rate Ro forms an inverted U-shaped curve as a
function of the decision threshold (Gold and Shadlen, 2002) or
the Cx-CD synaptic strength (Lo and Wang, 2006). Ideally, a sub-
ject should try to find the optimal threshold or synaptic strength
that maximizes Ro (peak of the inverted U-shaped curve) in order
to receive as much reward as possible in a given period of time.
However, various studies have shown that individual subjects,
including humans and animals, may favor speed over accuracy
or vice versa (Kay et al., 2006; Rinberg et al., 2006). Therefore,
the subjects may not seek to maximize Ro during the decision
but rather to speed up or to increase their accuracy. In order to
quantify such behavior, we need to measure the subjects’ degree
of preference for speed or accuracy. A number of studies have
quantified the tendency for favoring accuracy over maximizing
the reward rate for human subjects (Maddox and Bohil, 1998;
Bogacz et al., 2006). We extended this idea by including the ten-
dency for favoring speed and constructed a subjective reward rate

function:

Rs = 1 − kaperr

TITI + ks(TR + perrTp)
(9)

where ka and ks are the weighting factors (with values between
0 and 1) representing the degrees of preference for accuracy and
speed, respectively. Rs also forms an inverted U-shaped function
of the Cx-CD synaptic strength with different peak locations for
different values of (ka, ks) (Figures 5A,B). Therefore, if the Cx-
CD synaptic strength of a subject converges to a specific value
that corresponds to the peak location of Rs with a given (ka, ks),
we can say that the subject’s decisions were characterized by an
optimization that was weighted by their specific preference repre-
sented by the factors ka and ks. A large ka(ka > ks) indicates that
the subject is sensitive to the change in accuracy due to errors,
whereas a large ks(ks > ka) indicates that the subject is sensi-
tive to the change in the overall trial time due to slow decisions
or additional penalty periods. We can recover the conventional
(objective) reward rate Equation (8) by setting ka = ks = 1. In the
present study, we showed that the optimal objective reward rate,
Ro, for a given speed-accuracy preference (ks, ka) can be achieved
in our model by tuning DA-related parameters.

RESULTS
DEPENDENCE OF THE SYNAPTIC WEIGHT ON THE TRIAL DIFFICULTY
AND TRIAL OUTCOME
We tested the changes in synaptic weight in different trial con-
ditions (Figure 3). In an easy trial (strong motion strength) in
which the subject made a correct choice, the DA levels responded
strongly to the stimulus onset due to the large estimated reward
probability. However, the DA levels responded to the reward
delivery only weakly because the reward was highly anticipated
(Figure 3A). In contrast, in a difficult trial with a correct choice,
the DA levels responded to the stimulus onset weakly, while the
levels responded to the reward delivery strongly due to the less
anticipated reward (Figure 3C). The overall effect of the synap-
tic weight changes for a correct choice in both easy and difficult
conditions was facilitation. When the subject made an incorrect
choice, even though the DA increase in response to the stimu-
lus onset slightly facilitated the synapse, the absence of reward
reduced the DA levels, which resulted in an overall synaptic
depression (Figures 3B,D).

The plasticity rule that was used in our model was spike-time
based, and, therefore, the synaptic weight change was sensitive to
the variability of the spiking timing, which could be large in noisy
neuronal environments. As a consequence, whether the synap-
tic strength was able to reach a stable level in a block of trials
and whether the level of the stable synaptic strength depended
on the task difficulty remained in question. To address the ques-
tion, we tested the circuit model with blocks of trials with easy
or difficult conditions. We set the initial Cx-CD synaptic strength
to be 0.1 nS and found that, for the easy condition, the strength
quickly reached a range of 0.3–0.6 nS, and the range remained sta-
ble afterwards (Figure 4A). In contrast, testing the model with
the difficult condition also resulted in a stable but different
range of Cx-CD synaptic strength (∼0.1–0.3 nS) (Figure 4B).
The results showed that the model was able to operate in stable
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FIGURE 3 | Example trials showing distinct neuronal activity and

resulting Cx-CD synaptic weights in the following four conditions. (A) An
easy trial with a correct decision. (B) An easy trial with an incorrect decision.
(C) A difficult trial with a correct decision. (D) A difficult trial with an incorrect
decision. The top four spike rastergrams in each panel display the spike

activity of neurons in the Cxe, CD, SNr, and SCe in the side that corresponds
to the correct choice. The bottom two plots in each panel indicate the time
courses of Cx-CD synaptic strength and DA levels (in arbitrary units). In
general, correct trials result in synaptic facilitation, while error trials depress
synapses.

but different ranges of Cx-CD strengths for different task condi-
tions. Because the decision threshold is monotonically decreased
with increased Cx-CD strength (Lo and Wang, 2006), the stronger
Cx-CD strength in the easy compared to the difficult conditions
indicated that the circuit model reduced the decision threshold
for faster responses when the task was easy while it raised the
decision threshold for a better performance when the task was
difficult.

ADAPTATION TO THE CHANGE IN TASK DIFFICULTY
We showed that the circuit model tuned itself and operated at dif-
ferent levels of Cx-CD strengths when tested with trials involving
either easy or difficult conditions. However, in natural environ-
ments, the task conditions may vary with time. Therefore, we
asked whether the circuit model was able to adapt to environmen-
tal changes by testing the model with a sudden switch of the task
condition from easy to difficult and vice versa (Figures 4C,D). We
found that the circuit model was able to quickly change its Cx-CD
strength after the task condition switched. Specifically, the Cx-CD
strength decreased when the task condition changed from easy
to difficult, while it increased when the change reversed. These
results indicated that the circuit model was able to respond to
the increased task difficulty by slowing down the decision speed,
while it responded to decreased task difficulty by speeding up.
Furthermore, we calculated how long the model took to complete

the transition after the switch of the task condition. To this end,
we counted the number of trials it took for the Cx-CD synaptic
strength to reach the new average strength after the switch. We
found that it took 30 ± 25 trials for the easy to difficult switch
and 60 ± 28 trials for the difficult to easy switch.

DECISION OPTIMIZATION
The adaptive decision behavior shown in Figures 4C,D led to
the fundamental question whether the adaptation was optimal.
More specifically, does the decision strategy (the specific Cx-CD
strength chosen by the circuit model) maximize the reward rate
in both easy and difficult conditions? Our earlier study showed
that the (objective) reward rate, as a function of Cx-CD strength,
forms an inverted U-shaped curve. Therefore, there is an opti-
mal Cx-CD strength that corresponds to the peak of the curve
that gives rise to the maximum reward rate (Lo and Wang, 2006).
We further found that the inverted U-shaped curve shifts or the
optimal Cx-CD strength changes with different task conditions
(Lo and Wang, 2006). Therefore, in the present study, we asked
whether the model was able to automatically converge on the
optimal Cx-CD strength when the task condition changed from
easy to difficult. Indeed, we found that, when the task condition
was easy, the model converged on the optimal Cx-CD strength
(Figure 5A, thick black curve, ks = ka = 1). After we switched
the task condition to difficult, the model quickly changed its
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FIGURE 4 | Average Cx-CD synaptic strengths remain stable but

exhibit different levels for different task conditions. (A) The time course
of the synaptic strength in a block of trials with the easy condition. The
synaptic strength converged to a range between 0.3 and 0.6 nS. (B) The
time course of the synaptic strength in the difficult condition. The synaptic
strength converged to a range (between 0.1 and 0.4 nS), which is lower
than that in the easy condition. (C) When the trial condition switched from
easy to difficult, or (D) from difficult to easy, the synaptic strength quickly
converged to new range that is consistent with those shown in the (A,B).
The results show that the model exhibits stable and consistent adaptations
to changes in task difficulty.

Cx-CD strength to a lower range that was optimal in the difficult
condition (Figure 5B, thick black curve, ks = ka = 1).

One may argue that the optimization depends on the choice
of the model parameters and ask what would happen if we chose
different parameters. Below, we show that with different values
of dopamine-related parameters our model still reached optimal
decisions that were characterized by different weights for speed
and accuracy.

SUBJECTIVE REWARD RATE
As discussed in the Introduction and Materials and Methods,
human and animal subjects may not be ideal decision-makers that
maximize their objective reward rate Equation (8). Rather, some
individuals may favor more accurate decisions, while others may
favor faster decisions. In other words, subjects may have their own
subjective senses of optimization that are weighted by their prefer-
ences for speed or accuracy. We proposed a subjective reward-rate
Equation (9) that can be used to quantify such preferences that are
characterized by the values of the speed-weighting factor, ks, and
the accuracy-weighting factor, ka.

We addressed the two following fundamental questions. First,
what are the neuronal substrates that influence an individual’s
preference for speed or accuracy? This question is equivalent to
finding the neuronal parameters that achieve maximum subjec-
tive reward rates for a given combination of ks and ka. Second,
does the adaptive decision behavior remain optimal in terms of
subjective reward rate when the task condition changes? This
question is equivalent to asking, if a subject maximizes the sub-
jective reward rate for given ks and ka in a task condition, does the

subject still achieve the maximum subjective reward rate (for the
same ks and ka) when the task condition changes? We addressed
the questions with the following procedure:

(1) For each grid point on the (ks, ka) space (ranged from 0 to 1
with a grid space of 0.05), we calculated the subjective reward
rate Rs Equation (9) for both easy and difficult conditions
and then found the optimal Cx-CD synaptic strength that
maximized Rs in each condition.

(2) We tuned the neuronal parameters, performed simulations,
and then calculated the mean Cx-CD synaptic strengths for
each task condition (easy or difficult). Here, we selected
three DA-related parameters for tuning: (1) cest in Equation
(2), representing the magnitude of the DA responses to the
stimulus onset (estimate of reward probability); (2) cerr in
Equations (4) and (5), representing the magnitude of the DA
responses to the reward delivery or absence (reward predic-
tion error); and (3) The baseline DA level, DAb. For each set
of parameters (cest, cerr, and DAb) we found the mean and
the standard deviation of the Cx-CD strengths for each task
condition.

(3) Finally, by combining the results from 1 and 2, we looked
for the (ks, ka) that gave rise to the optimal Cx-CD strengths
that matched the simulated mean Cx-CD strengths for each
parameter set (cest, cerr, and DAb) for both the easy and diffi-
cult conditions. We noted that the matched ks and ka may not
fall exactly on a grid point in the (ks, ka) space. Therefore, we
first located an area in the (ks, ka) space with the enclosed grid
points that had optimal Cx-CD strengths very close to the
simulated mean strengths (typically within 0.5 standard devi-
ation). Then we had the center point of this area represent the
matched (ks, ka).

We were able to identify the corresponding ks and ka for each
model setting set that we tested (Figures 5A,B). We plotted the
results for four representative settings. Setting a corresponded to
the original setting (used in Figures 3, 4) in which cest = cerr = 1
and DAb = −0.2. Setting b represented enhanced responses to
reward delivery and absence (cerr = 1.8). In setting c, we reduced
the baseline DA level (DAb = −0.25). Setting d represented the
weakened responses to stimulus presentation (cest = 0.9). The
results showed that the different model settings represented the
optimizations for different decision strategies (ks and ka combi-
nations). Moreover, the circuit remained optimal for the same
strategy when the task conditions changed.

Next, we examined how the neuronal parameters, cest, cerr,
and DAb, affected a subject’s preference toward either speed or
accuracy. We found that the simulated subject favored accuracy
(ka > ks) when we reduced the sensitivity, cest, of the DA system to
the estimate of reward probability as well as reduced the baseline
DA level, DAb. In contrast, the simulated subject favored speed
(ks > ka) if we increased the sensitivity, cerr, to the reward predic-
tion error (Figure 5C). We further analyzed the simulated result
at the behavioral level and verified that, with a preference to accu-
racy (ka > ks), the percentage correct was larger but the decisions
were slower than those in the ideal decision cases (ka = ks = 1).
In contrast, with a preference to speed (ks > ka), the decisions
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FIGURE 5 | Different decision strategies (characterized by favoring

speed or accuracy) can be realized by tuning three dopamine-related

parameters. (A) Each decision strategy can be represented by a subjective
reward rate curve in the easy condition. We plotted curves for three
different decision strategies (gray curve: left ordinate, solid and dashed
black curves: right ordinate). (B) The same three decision strategies show
shifted subjective reward rate curves in the difficult condition. We
performed simulations for the model with three different model settings
and found that each of the settings forms specific ranges of Cx-CD synaptic
strengths in both task conditions (a, original as in Figures 3, 4, b,

enhanced responses to reward presentation/absence, and c, reduced
baseline DA level. The arrows indicate the mean synaptic strength and
horizontal bars represent the standard deviation). We found that each of
the model settings corresponded to the optimization for a specific decision
strategy (ka, ks). The x’s indicate the peak locations of the curves. (C)

Corresponding decision strategies for the three model settings [a–c in
(A,B)] shown on a (ka, ks) plane. In addition, we tested the model by
reducing the response of DA level to the stimulus presentation and found
that the setting resulted in an accuracy-emphasis strategy (labeled by d),
which is similar to that of the setting c.

were faster but the error rate was higher than those in the ideal
decisions (Figures 6A,B).

DIFFERENTIAL RESPONSES TO THE SAME STIMULUS DUE TO
ADAPTATION
In our task, the subjects were presented with stimuli with motion
coherence levels of c′ = 3.2, 6.4, or 12.8% in the difficult con-
dition and c′ = 12.8, 25.6, or 51.2% in the easy condition. The
task design was unique in that the subjects encountered stimuli
with c′ = 12.8% in both conditions. Due to the adaptive behav-
ior that brings the Cx-CD synaptic strength to different levels
between the two conditions, we found that, for the same motion
strength (c′ = 12.8%), the model circuit performed better in the
difficult than in the easy conditions (Figure 6C). This observation
provided a behavioral assessment that allowed us to easily assess
whether a subject exhibited adaptive behavior when the task diffi-
culty changed. We noted that this was a general result of adaptive
behavior and was not specific to our model.

ROLES OF THE PHASIC RESPONSES OF DA LEVELS IN DECISION
ADAPTATION
It is important to test individual contributions of the two pha-
sic DA responses (to the stimulus presentation and to the reward

delivery/absence) in the adaptive behavior of decision making. To
this end, we performed two sets of simulations. In the first set, we
tested the model by removing the DA responses to the stimulus
presentation (estimate of reward probability), and, in the second
set, we removed the DA responses to the reward delivery/absence
(reward prediction error). We found that, without the phasic DA
response to the stimulus presentation in the beginning of a trial,
even though the Cx-CD strength was able to remain at stable
levels in the difficult condition, the strength could not be main-
tained and quickly dropped to nearly zero in the easy condition
(Figure 7A). This was because, in the difficult condition, the sta-
bility of the Cx-CD strength mainly relied on the balance between
the facilitation that was due to the reward delivery (large posi-
tive reward prediction errors) and the depression that was due
to the absence of the reward in the error trials and the baseline
DA levels. Removing the DA responses to the stimulus presen-
tation did not produce much impact on the circuit. However,
in the easy condition, the reward delivery only weakly facili-
tated the Cx-CD synapses (due to small reward prediction errors),
and the facilitation that was induced by the strong DA responses
to the stimulus presentation (due to the large estimated reward
probability) played a crucial role in maintaining the stability of
the Cx-CD synapses. Removing the DA responses to the stimulus
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FIGURE 6 | The three different model settings (a–c in Figure 5) result in

different behavioral performances. (A) The percentage correct is higher in
the setting that emphasizes accuracy (squares: setting c, circles: setting a,
triangles: setting b). Filled and open symbols indicate the data for the difficult
and easy conditions, respectively. To help visualize the differences, the data
were fitted separately in the two conditions using p(c′) = 1 − 1

2 e−((c′)/β)

where β is a fitting parameter. (B) The mean decision times for the same
model settings. The mean decision times are smaller in the setting that

emphasizes speed. Both easy and difficult conditions include the stimulus
motion strength of c′ = 12.8%. However, due to the decision adaptation, the
neural circuit converges to different levels of Cx-CD synaptic strengths in the
two task conditions. As a result, the behavioral performances for the same
motion strength of c′ = 12.8% in the two task conditions are different. (C) By
analyzing the data from setting a, we found that the percentage correct (left
panel) is higher, while the mean decision time (right panel) is larger in the
difficult than in the easy conditions. ∗p < 0.05.

presentation destroyed the balance between the facilitation and
depression. As a consequence, the circuit was dominated by the
depression that occurred when the DA level was at the baseline
level and when the reward was not delivered in erroneous tri-
als. In the second set of simulations, we removed the response
of the DA levels to the reward delivery/absence and found that
Cx-CD strength dropped to nearly zero in the difficult condition
but was maintained at a reasonable level in the easy condition
(Figure 7B). The imbalance between the facilitation and depres-
sion that occurred in the difficult condition was mainly due to the
loss of the strong facilitation that was induced by reward delivery.
The effect of the loss of depression that was induced by reward
absence was relatively minor. These results suggested that both
phasic DA responses were crucial for producing proper synaptic
strength but that they contributed differently in the easy and dif-
ficult conditions. Thus, with only one phasic response, a subject
may still be able to achieve optimal decisions in one condition but
will fail when the task condition changes.

ADAPTATION ACROSS DIFFERENT INTER-TRIAL INTERVALS AND
PENALTY TIMES
So far, we only tested the model by changing the task difficulty.
We asked whether the same model also optimized decisions under
other different task conditions involving, in particular, the tempo-
ral aspects of the task setting. The reason was that the subjects’

perception to accuracy and time are two of the major factors
that influence decision adaptation and optimization. Because we
already tested the model by changing the task difficulty, the next
objective was to test changing the speed or the pace at which
the subjects performed the task. The easiest temporal parame-
ters to manipulate are the ITIs and penalty times. Here, we used
the difficult setting (c′ = 3.2, 6.4, and 12.8%) and changed the
task conditions by adding 300 ms to both ITIs and penalty times
as well as by subtracting 300 ms from both of them. The model
parameters followed those that were used in Figures 3, 4 (or set
a in Figure 5). We found that the subjective reward rate curve
(ka = ks = 1) shifted toward the left as the ITI and the penalty
time increased. Similarly, the model also exhibited the same trend
by reducing the mean Cx-CD synaptic strength (Figure 8). We
noted that a deviation between the simulated synaptic strength
and the optimal strength was observed after adding 300 ms (ITI =
800 ms, penalty time = 1800 ms), which characterizes the limita-
tion of the model. A possible solution to the deviation is discussed
in the Discussion section.

DISCUSSION
In summary, we proposed a neural circuit model that was
endowed with dopamine-modulated plasticity and that remained
optimized (maximum subjective reward rates) in adaptation to
changes in the task conditions. The ability is realized by the
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FIGURE 7 | Different contributions of the phasic responses to decision

optimization. (A) By removing the response of the DA system to the
stimulus presentation, the circuit model was not able to maintain a stable
Cx-CD synaptic strength in the easy condition. (B) In contrast, when we
removed the response of the DA system to the reward delivery/absence,
the model failed when the task condition switched to difficult.

effects of the following three DA components: (1) responses of
DA to the stimulus presentation (estimate of reward probabil-
ity), (2) responses of DA to the reward delivery/absence (reward
prediction error), and (3) the baseline DA levels that causes slow
synaptic depression. Balance between the facilitating and depres-
sion effects caused by these components is crucial for establishing
a stable decision strategy (Figure 9A).

When a balance between the DA components is reached, the
DA components that produce synaptic depression are compen-
sated for by ones that facilitate synapses. Hence, changing the
task condition results in changing the performance and tilting the
balance between facilitation and depression. As a consequence,
the adaptive behavior occurs when the Cx-CD synaptic strength
shifts until a new balance is reached. We illustrate the process
with an example. Assuming that the Cx-CD synaptic strength is
in a stable state in the easy condition and if the task condition
suddenly switches to difficult, the DA responses to the stimulus
onset are weakened due to the lower estimated reward probabil-
ity. The changes lead to less synaptic facilitation. In addition, the
number of erroneous trials increases and the average trial time is
prolonged (due to the punishment period). Both changes induce
synaptic depression and effectively raise the decision threshold.
As the threshold rises, the performance improves and the per-
centage of correct trials increases. The performance improvement
leads to more positive reward prediction errors (more rewards
than expectation) which facilitate the synapses. As a consequence,

FIGURE 8 | Decision optimization under different speed settings by

changing the intertrial interval (ITI) and the penalty time. a, The original
setting (ITI = 500 ms, penalty time = 1,500 ms), b, the fast setting (ITI =
200 ms, penalty time = 1200 ms), and c, the slow setting (ITI = 800 ms,
penalty time = 1800 ms). Circles, pluses, and asterisks indicate the
corresponding subjective reward rates (ks = ka = 1) as functions of Cx-CD
synaptic strength. As the ITI and the penalty times increase, the optimal
Cx-CD synaptic strength that maximizes the reward rate reduces. Using the
same parameters (set a in Figure 5) that optimize the objective reward rate
(ks = ka = 1) under different difficulty settings, we found that the model
also followed the same trend by lowering the average Cx-CD synaptic
strength, as indicated by the shifted arrows. The horizontal bars represent
the standard deviations of the synaptic strengths in the corresponding
conditions.

the depression and facilitation effects reach the balance and the
Cx-CD strength is stabilized at a new and weaker level in the
difficult condition. A similar argument can be made for the
case in which the task condition switches from difficult to easy
(Figures 9B,C).

By defining the speed and accuracy factors (ks and ka) for the
decision behavior, we were able to identify DA-related parameters
that accounted for the preference for speed or accuracy. Below, we
discuss how the key DA components work to produce different
optimal strategies during the decision process.

BASELINE DA LEVEL
In the model, the baseline DA level is slightly below the neutral
level and results in a gradual decaying Cx-CD synaptic strength
during the course of a trial and between the ITIs. Therefore,
reducing the baseline DA level produces a faster decay in the
Cx-CD synaptic strength, which leads to an increased decision
threshold that improves the accuracy. A better accuracy produces
more synaptic facilitation that balances with the strong synaptic
depression caused by the lower baseline DA level. As a result, a
lower DA level results in a better performance.

DA RESPONSES TO STIMULUS PRESENTATION
If we reduce the magnitude of the response, the synapses become
more depressed, and, hence, the decision threshold increases.
The change results in a higher percentage of correct decisions
and reduces the synaptic depression that is caused by erroneous
responses. As a consequence, the balance between facilitation and
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FIGURE 9 | Schematics showing how stability and adaptation are

realized by the dynamic balance between different model

components. (A) The stability of synaptic strength under a balanced
condition. Any change in the synaptic strength (upper left rectangle) will
alter the performance which will in turn change the DA level that leads to
an opposite effect on the synaptic strength. The red and green circles
indicate the flow of the processes induced by a decrease and an increase
in the synaptic strength, respectively. The upward arrows represent an
increase in the level of the source components while the downward
arrows represent a decrease. Plus and minus signs indicate the facilitating
and depressing effects on the target components, respectively. (B) The
dynamic balance leads to a stronger synapse in the easy than in the
difficult conditions. In each small bar chart, the left bar indicates the
response of DA that represents the estimate of the reward probability

(�DAest). The two middle bars indicate the response of DA to the reward
delivery (�DAr ) (the upper one) and to the reward absence (�DAnr ) (the
lower one). The bar on the right represents the baseline DA level (�DAb ).
The plus signs indicate the facilitating effect which is against the
depressing effect indicated by the minus signs. The summation of the plus
and the minus signs indicates the direction of change in the synaptic
strength. When the task condition is easy, the high �DAest level increases
the synaptic strength which reduces the performance. As a consequence,
�DAnr becomes stronger and the synaptic facilitation stops. In contrast,
the difficult task condition initially depresses the synapse. The depression
leads to improved performance that induces more facilitating effect and,
thus, the initial synaptic depression stops. (C) The balance shifts and
re-established when there is a change in the task conditions. Such a
dynamic balance underlies adaptive decision making.

depression is reestablished but with a better decision accuracy (an
accuracy-emphasis strategy).

DA RESPONSES TO REWARD DELIVERY/ABSENCE
The responses of DA to reward delivery/absence induce synap-
tic facilitation in correct trials and depression in erroneous trials.
However, the overall facilitating effect is stronger than the depres-
sive one. Therefore, if we increase the magnitude of the DA
responses, the net effect is to facilitate the synaptic strength. The
change produces a lower decision threshold which leads to a faster
decision or a higher error percentage. As a consequence, the bal-
ance between facilitation and depression is reestablished but with
a faster decision (a speed-emphasis strategy).

The adaptive behavior results in a general prediction that can
be tested experimentally. At the behavioral level, the model pre-
dicts that the performances (percentage correct) at the motion
strength of c′ = 12.8% are different between the easy block and
the difficult block. The difference provides a quick and easy

way to assess the existence of the adaptive behavior in deci-
sions. Furthermore, the model suggests that the decision strategy
(speed or accuracy emphasis) can be characterized by the accu-
racy factor ka and the speed factor ks. Although ka and ks are not
directly measurable, it is possible to determine a subject’s ka and ks

indirectly by comparing the measured performance and reaction
times with the proposed model.

In addition to the behavioral predictions discussed above,
our model also makes specific predictions at the neuronal level.
Specifically, the model suggests possible neural mechanisms that
account for the intersubject and interspecies differences in deci-
sion strategies. For example, some animals make quick decisions
rather than slower but more accurate decisions (Chittka et al.,
2009). Apart from the issues in experimental design (Rinberg
et al., 2006; Chittka et al., 2009) and in the differences between
sensory modalities, one possible explanation is that the DA sys-
tems in animals respond strongly to the presentation of reward
delivery/absence and, hence, shift the decision behavior to a
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speed-emphasis state. If a species, such as humans, tends to
emphasize accuracy and make slow decisions, they may have rela-
tively lower DA baselines that enhance the gradual Cx-CD depres-
sion and produce an overall weaker Cx-CD synaptic strength or a
higher decision threshold. Alternatively, according to our model,
the tendency can be accounted for if the subjects have weaker
responses to the stimulus presentations.

Due to the lack of experimental data, we did not distinguish
the relative contributions of the pre- and post-synaptic factors
to the changes in the synaptic strength. According to Equations
(6) and (7), the levels of the synaptic strength are affected by
�w, which is proportional to the multiplication between wmax

and ϕ, which is a function of the dopamine levels (�DA).
Physiologically, wmax characterizes the post-synaptic factors while
ϕ corresponds to the pre-synaptic effect at the DA neuron side.
Mathematically, the particular choice of the wmax values is not
important as it can be compensated by changing ϕ. In the present
study, we arbitrary set the values for wmax and then we tuned
the magnitudes of DA responses, which effectively changed ϕ,
to produce desired decision behavior. Detailed neurophysiologi-
cal experiments are required to identify the relative contributions
of the pre- and post-synaptic factors so that we can adopt more
realistic values for wmax and ϕ.

For the sake of simplicity, we did not include in the proposed
model the neural circuit that estimates the reward probability
for each stimulus motion strength based on the past trial out-
comes. Instead, we used a preset function Equation (1) of reward
probability vs. stimulus motion strength. It will be interesting to
construct such an estimator circuit in future studies as this circuit
is useful in studying the learning process of decision adaptation. A
possible solution is to implement a spiking and biologically real-
istic version of the value estimator as described in Rao (2010).
Furthermore, the simulated average Cx-CD synaptic strength was
slightly stronger in the easy condition and weaker in the difficult
condition or the high ITI + penalty time conditions than the opti-
mal values that were suggested by the objective reward rate curve
(Figures 5A,B, 8). We expect that the small deviations could be
corrected for if we implement an estimator circuit that can more
accurately estimate the performance based on the trial history.

Several computational models for flexible decision behavior
may relate to our work. In a firing-rate network model that
exhibits rapid threshold tuning, researchers have demonstrated
that their model is able to quickly converge to the optimal thresh-
old that maximizes the objective reward rate under different
task environments (Simen et al., 2006). However, the network
needs prior knowledge about the reward rate-threshold relation-
ships across different task environments, such as varying ITIs or
varying difficulties. In contrast, our model does not need such
information. Instead, the model requires a rough estimate of
performance as a function of difficulty Equation (1), which is
independent of the task environment. Compared to the reward
rate-threshold relationships, performance as a function of dif-
ficulty seems to be the information that is more naturally and
easily learned by subjects during training. This argument needs
to be tested experimentally. Some other rate-based models have
focused on action selection and executive control in BG circuits
involving direct and indirect pathways (Cohen and Frank, 2009;

Wiecki and Frank, 2013). The inclusion of the indirect pathway
is a reasonable choice in their models as it is the pathway that
has been associated with inhibitory control, the enhancement of
action precision, or the avoidance of aversive stimuli (Hikosaka
et al., 2000; Jiang et al., 2003; Hikida et al., 2010). Whether the
indirect pathway plays a crucial role in the adaptation and opti-
mization of perceptual discrimination tasks requires further tests.
Furthermore, our model focuses on spiking neurons with detailed
dopamine dynamics and STDP and is therefore able to pro-
vide experimental testable predictions on the correlation between
cellular level factors and behavior performance.

We noted that a recent primate study has demonstrated that
frontal-eye-field neurons change their ramping rates in a visual
search task when the monkeys are cued for different decision
speeds (Heitz and Schall, 2012). Their result suggested the pos-
sibility of another neuronal mechanism (other than changing
the decision threshold) that might underlie the behavior of a
SAT. Interestingly, we have recently shown that similar neu-
ronal responses can be observed in the attractor decision model
by applying a top–down control with balanced excitation and
inhibition (Wang et al., 2013). We have suggested that the two
mechanisms of SAT do not exclude each other. Rather, differ-
ent SAT mechanisms may be implemented by the same subject
under different task conditions. It is interesting to integrate the
two mechanisms in a single model and to investigate whether
the model is able to reproduce a wider range of empirical obser-
vations. Furthermore, a recent primate study has shown that
neurons in the caudate nucleus encode complex information,
including evidence accumulation, evaluation, and choice biases
(Ding and Gold, 2010), during a random-dot task. With the com-
bination of a top-down control mechanism (Wang et al., 2013),
it is worth exploring how our model is able to reproduce these
observations.

In conclusion, we proposed a neural circuit model for deci-
sion optimization and adaptation. The model is novel in several
of the following aspects. First, the model optimizes (subjectively)
the decision not just in a single environment but also in environ-
ments with changing task difficulties. Second, the model suggests
neuronal substrates that correlate with the decision optimization
in different task conditions. Third, the model provides an expla-
nation at the neuronal level for why some subjects favor quick
decisions while others favor accurate decisions.
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