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Abstract
As the oldest, but least understood sensory system in evolution, the olfactory system represents one of the most challenging
research targets in sensory neurobiology. Although a large number of computational models of the olfactory system have been
proposed, they do not account for the diversity in physiology, connectivity of local neurons, and several recent discoveries in the
insect antennal lobe, a major olfactory organ in insects. Recent studies revealed that the response of some projection neurons were
reduced by application of a GABA antagonist, and that insects are sensitive to odor pulse frequency. To account for these
observations, we propose a spiking neural circuit model of the insect antennal lobe. Based on recent anatomical and physiological
studies, we included three sub-types of local neurons as well as synaptic short-term depression (STD) in the model and showed
that the interaction between STD and local neurons resulted in frequency-sensitive responses. We further discovered that the
unexpected response of the projection neurons to the GABA antagonist is the result of complex interactions between STD and
presynaptic inhibition, which is required for enhancing sensitivity to odor stimuli. Finally, we found that odor discrimination is
improved if the innervation of the local neurons in the glomeruli follows a specific pattern. Our findings suggest that STD,
presynaptic inhibition and diverse physiology and connectivity of local neurons are not independent properties, but they interact
to play key roles in the function of antennal lobes.

Keywords Local neuron . Olfactory . Computational

1 Introduction

The antennal lobe (AL) receives signals from the olfactory re-
ceptor neurons (ORNs) on the antennae. Each type of ORN
expresses a single type of olfactory receptor and projects to
one of many glomeruli in the AL. Neural signals are picked
up by glomerulus-specific projection neurons (PNs) and sent
to higher brain regions, including the mushroom body and the
lateral horn (Hansson and Anton, 2000; Stocker et al. 1990;
Jefferis et al. 2001). Although each of the ORN-glomerulus-
PN pathways carries signals from one olfactory receptor type,
the neural signals in each glomerulus are not completely

independent. Glomeruli are connected by local neurons (LNs),
and recent studies have demonstrated diversity in LNs, both in
their physiology (Shang et al. 2007; Seki et al. 2010; Assisi et al.
2012) and innervation patterns (Chou et al. 2010; Reisenman
et al. 2011). However, some of these findings were not ad-
dressed or considered in previous models. While some theoret-
ical studies suggest that LNs enhance odor response contrast
(Cleland and Sethupathy 2006; Linster and Cleland 2010;
Cleland and Linster 2012; Yu et al. 2014), other studies uncov-
ered a more broad olfactory response in PNs (Bhandawat et al.
2007; Olsen et al. 2007; Shang et al. 2007; Huang et al. 2010).

Neurons in the AL exhibit complex firing activity. In the
Drosophila AL, ORNs fire spontaneously, without odor input
(de Bruyne et al. 1999a, 2001). Short-term synaptic depres-
sion in ORNs-to-PNs connections has been observed
(Kazama and Wilson 2008) and suggested to be involved in
the saturation of PN activity under strong odor inputs.
(Rangan 2012). Moreover, most inhibitory LNs respond to
odor onsets, while others respond to offsets (Nagel and
Wilson 2016). Some LNs also exhibit spontaneous activity
and stop firing upon odorant stimulation (Chou et al. 2010;
Nagel et al. 2015; Nagel and Wilson 2016).
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The complex behavior and diverse innervation patterns of
LNs are believed to be correlated with their function. Previous
modeling studies have suggested that the balance between
inhibitory and excitatory AL LNs enhances decorrelation of
responses to similar odors (Assisi et al. 2012; Shlizerman et al.
2014). Moreover, although odor source locating is believed to
be dependent on odor concentration discrimination (Johnson
and Leon, 2000; Rospars et al., 2000; Hinterwirth et al., 2004;
Yoshida et al., 2012; Zhou and Belluscio, 2012; Arnson and
Holy, 2013; Gautam et al., 2014; Hellwig and Tichy, 2016),
intermittent odor stimuli caused by odor plumes were also
found to provide crucial information for odor source localiza-
tion (Celani et al., 2014; Justus et al., 2002; Shraiman and
Siggia, 2000; Murlis et al. 1992). Previous studies indicated
that odor intermittency is a spatial-temporal cue for animals
(Park et al. 2014, 2016; Huston et al. 2015).

A recent study showed that the frequency of floral plumes
increased, and the intermittency decreased, with increasing
distance from the flower (Riffell et al. 2014), and that odor
navigation and feeding are significantly decreased by increas-
ing inter-stimulus pulse frequency. The same study also dem-
onstrated that addition of a GABAB receptor antagonist
(CGP54626) led to reduced PN response and decreased odor
recognition. These results imply that inhibitory LNs partici-
pate in odor plume-associated odor perception.

In this study, we attempted to link the behavior and inner-
vation patterns of LNs to their functions. Specifically, we con-
structed a spiking neural network model of the insect AL and
demonstrated how interactions between ORNs, short-term de-
pression, and spontaneous LNs contribute to odor pulse fre-
quency discrimination, and how these interactions underlie
the opposing responses to GABA antagonists. We further
showed that the innervation patterns of LNs modulate the
ability to discriminate between similar odors and broadens
the response of PNs to odor stimuli.

2 Materials and methods

2.1 Network structure

We constructed a scaled-down model of the AL, which con-
tains 10 glomeruli. Each glomerulus is innervated by an ORN,
which makes a direct connection with a PN, and by the three
observed LN types: spontaneous local neurons (SLNs), pas-
sive local neurons (PLNs), and excitatory local neurons
(PLNs) (Fig. 1a). SLNs fire spontaneously, without stimulus,
and are turned off by the onset of an odor stimulus (Chou et al.
2010; Nagel et al. 2015; Nagel and Wilson 2016). PLNs, in
contrast, only fire when there is an odor stimulus, and are the
most commonly described inhibitory LN type. ELNs have an
activity pattern similar to that of PLNs, but are excitatory local
neurons (Olsen et al. 2007; Shang et al. 2007; Huang et al.

Fig. 1 Schematics of the antennal lobe circuit model. a The inter-
glomerulus circuit diagram. The model consists of 10 glomeruli (Glo,
indicated by dashed boxes), which are identical in structure. Each glo-
merulus receives input from the olfactory receptor neurons (ORNs),
which make synaptic connections with the projection neurons (PNs).
Glomeruli are interconnected via local neurons (LNs) that are physiolog-
ically and anatomically diverse. For visual clarity, we omitted the con-
nections between local neurons, which are depicted in panel B. b
Connections between local neurons. We simulated three types of local
neurons, spontaneous LNs (SLNs), passively LNs (PLNs), and excitatory
LNs (ELNs). SLNs and PLNs are inhibitory. All inhibitory connections in
the model circuit are pre-synaptic, except for the connections from PLNs
to SLNs as this connection suppresses the spontaneous activity of SLNs,
rather than blocking the excitatory input as in other LNs. ELNs receive
excitatory input from PNs as previously observed (Olsen et al. 2007;
Shang et al. 2007). c Activation patterns for the 30 artificial odors, which
are classified into three groups. Odors in the same group activate the same
set of ORNs/glomeruli with different normalized peak firing rates (indi-
cated by the grayscale of each bar), and, therefore, are considered as
similar. The odor discrimination task was conducted using odors within
the same group
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2010; Assisi et al. 2012; Shlizerman et al. 2014)]. The synap-
tic weights of these LNs were considered as free parameters
and were used to fit the model’s behavior to the observed
effects of the GABA antagonist (Olsen et al. 2010; Riffell
et al. 2014) and the odor pulse frequency (Riffell et al.
2014). Since the detailed connectivity between different types
of neurons in each insect glomerulus is still not clear, in the
proposed model we keep the connectivity as general as possi-
ble; nearly every type of LN makes synaptic connections with
every other type of neurons (Fig. 1b). The detailed connectiv-
ity is described below.

2.2 Artificial odor stimuli

To test how the model circuit responded to different odor
stimuli, we generated three groups of artificial odors with each
group containing 10 odors. Odors in each group are assumed
to be perceptually similar, and they stimulate the same sub-
group of ORNs (Fig. 1c). Since a Drosophila ORN fires 8
spikes/s in the absence of an odor, on average (de Bruyne
et al. 1999b, 2001; Wilson 2013), all ORNs in our model
received randomly generated background stimuli to reproduce
the observed baseline activity. Each odor input can be de-
scribed as a 10 dimensional vector, and each dimension cor-
responds to the input strength to an ORN. To exclude the
effects of other unrelated factors, we placed several constraints
on the artificial odors: 1) The total input strength (summation
of input firing rate across all ORNs) of each odor is a constant,
2) odors in the same group only stimulate the same five glo-
meruli, and 3) the distance between each normalized odor
vector in the same group is set to be 0.3. The purpose of the
third constraint is to prevent odors in the same group from
being too similar. We created one million odors of the same
group following the first two constraints and discovered that
the average distance between arbitrary pairs of normalized
odor vectors was 0.25. Therefore, the constraint of 0.3 guar-
anteed that odors in the same group were similar but still
distinguishable.

Studies have shown that ORNs adapt to odor stimuli with
decaying responses following the odor onset (Wilson 2013).
However, the leaky integrate-and-fire model used in the pres-
ent study does not exhibit input adaptation. To reproduce this
property, we set an exponential decay for the odor input.
Specifically, the input firing rate of the odor stimulus decayed
exponentially to 75% of the initial value with a time constant
of 110 ms. This decaying odor input gave rise to an ORN
response that resembled observed input adaptation.

For all simulations in our study, the difference between the
baseline activity and the peak PN firing rates during odor
stimulation were used to represent the neural responses of
the model to the odor stimuli. Concentration of an odor is
represented by the strength of the odor stimulation.

2.3 Local neurons innervation patterns

Wemodeled three LN types in each glomerulus: PLNs, ELNs,
and SLNs. We tested different innervation patterns for PLNs
and ELNs. The default pattern for PNLs and ELNs was as-
sumed to be correlated with long-term odor stimulation. In
other words, each PLN and ELN innervated a subgroup of
glomeruli stimulated by a specific odor group (Fig. 1c). To
this end, we created three groups of LNs with each group
containing three PLNs and ELNs. Each group of LNs strongly
innervates the glomeruli stimulated by one of the three odor
groups and weakly innervates other glomeruli. The default
innervation strengths of SLNs in each glomerulus are propor-
tional to the spontaneous firing rate of the ORN innervating
that glomerulus. When testing how the LN innervation pattern
influences odor discrimination, the targeted LN type follows
the innervation patterns stated above and the other LN types
use randomly generated innervation patterns. The innervation
strength of each LN in each glomerulus is listed in Table 1.
There is a total of 9 PLNs, 9 ELNs, and 18 SLNs in the model
circuit. The total number of LNs is 36, which is 3–4 times
larger than the number of the glomeruli. This ratio is consis-
tence with various observations of fruit fly antennal lobes
(Chou et al. 2010; Seki et al. 2010).

2.4 Neuron and synaptic models

2.4.1 Leaky integrate-and-fire neurons

Each neuron in the circuit model is simulated using the leaky
integrate-and-fire model. The membrane potential, V(t), for
each neuron obeys the following equation:

Cm
dV tð Þ
dt

¼ −gL V tð Þ−VLð Þ−IAHP−I input; ð1Þ

where Cm is the membrane capacitance, gL is the leak con-
ductance, VL is the resting potential, IAHP is the current
contributed by afterhyperpolarization, and Iinput is the cur-
rent produced by external inputs. Both currents are de-
scribed in detail below. When the membrane potential,
V(t), of each neuron reaches a threshold, Vthreshold, a spike
is emitted and V(t) is set to the reset potential, Vreset. The
membrane parameters in our model were set based on pre-
vious research (Seki et al. 2010, Gouwens and Wilson,
2009), and adjusted by tuning the values to reproduce the
results of previous studies (Olsen et al. 2010; Riffell et al.
2014), as discussed in the subsection “Parameter tuning”
below (Table 2). The input current, Iinput, includes olfacto-
ry inputs from odor stimuli; synaptic inputs, Isyn, from oth-
er neurons in the circuit; and the background input, which
is used to generate spontaneous activity in ORNs and
SLNs. Odor stimuli were only applied to ORNs.
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2.4.2 Conductance-based synapses

The synaptic input was modeled as change of conductance on
themembrane due to activation of receptors at the synapses.We
modeled three types of receptors: Ach (cholinergic), GABAA

and GABAB. The synaptic input, Isyn, from the presynaptic
neuron, i, to the postsynaptic neuron, j, is described by:

I syn ¼ gAch;ijwijsAch;ij tð Þ Vi tð Þ−VEð Þ
þgGABAA;ijwijsGABAA;ij tð Þ Vi tð Þ−VIð Þ
þgGABAB;ijwijsGABAB;ij tð Þ Vi tð Þ−VIð Þ;

ð2Þ

where gr and sr are the conductance and gating variable for the
receptor, r, respectively. wij is a weight factor modulated by

presynaptic inhibition and short-term depression as described
below. VE (=0mV) and VI (= − 60mV) are reversal potentials for
excitatory (Ach) and inhibitory synapses (GABAA and
GABAB), respectively. For each type of the receptor, the gating
variable is given by:

dsr;ij
dt

¼ −
sr;ij
τ r

þ ∑
l
δ t−tl;i
� �

; ð3Þ

where τr is the time constant of the receptor r (20 ms for Ach,
5 ms for GABAA, 100 ms for GABAB); tl is the time of the l-th
presynaptic spike; and δ is a Dirac delta function, which is in-
finity at the time of every presynaptic spike (t= tl, i) and 0 else-
where. The total area under the curve of Dirac delta function is 1.

Table 2 Note: This data is
mandatory. Please provide ORN PN PLN ELN SLN

Capacitance 0.052 nF 0.007 nF 0.12 nF 0.25 nF 0.005 nF

Refractory Period 3 ms 3 ms 3 ms 3 ms 3 ms

Reset Potential -52mv -61mv -75mv -75mv -25mv

Resting Potential -70mv -70mv -70mv -70mv -48mv

Membrane Time Constant 16 ms 16 ms 20 ms 20 ms 20 ms

Threshold Voltage -50mv -60mv -50mv -25mv −22.2mv

Table 1 Innervation strength (A)
and synaptic efficacy (B) of the
proposed network model

A

Glomeruli A B C D E F G H I J

ORN 1 1 1 1 1 1 1 1 1 1

PN 1 1 1 1 1 1 1 1 1 1

PLNs, ELNS #1 0.5 0.5 0.5 0.5 0.5 1.3 1.6 1.4 1.6 1.4

#2 0.5 0.5 0.5 0.5 0.5 1.3 1.6 1.4 1.6 1.4

#3 0.5 0.5 0.5 0.5 0.5 1.3 1.6 1.4 1.6 1.4

#4 1.6 1.5 1.3 1.5 1.4 0.5 0.5 0.5 0.5 0.5

#5 1.6 1.5 1.3 1.5 1.4 0.5 0.5 0.5 0.5 0.5

#6 1.6 1.5 1.3 1.5 1.4 0.5 0.5 0.5 0.5 0.5

#7 1.8 1.3 0.5 0.5 0.5 0.5 0.5 1.5 1.3 1.3

#8 1.8 1.3 0.5 0.5 0.5 0.5 0.5 1.5 1.3 1.3

#9 1.8 1.3 0.5 0.5 0.5 0.5 0.5 1.5 1.3 1.3

SLNs 1 ~ 18 0.98 0.75 0.33 0.42 0.38 0.3 0.47 0.84 0.77 0.76

B

pORN, PLN 0.7

pORN, ELN 1

pPLN, ELN 0.65

pELN, PLN 0.001

pELN, PLN 0.01

pPLN, SLN for GABAA 0.1

pPLN, SLN for GABAB 0.0002

pPLN, ORN (on ORN→PN presynapse)for GABAA 0.25

pPLN, ORN (on ORN→PN presynapse)for GABAB 0.00005

pSLN, ORN (on ORN→PN presynapse)for GABAA 1

pSLN, ORN (on ORN→PN presynapse)for GABAB 0.0001
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2.4.3 Presynaptic inhibition

We also modeled presynaptic inhibition, which was observed
in the fruit fly antennal lobes (Olsen andWilson 2008). In this
type of inhibition, a GABAergic neuron, k, targets the presyn-
aptic terminal of a synapse formed by a presynaptic neuron, i,
and a postsynaptic neuron, j. The release of GABA neurotrans-
mitters from the neuron k activates the GABAergic receptors
on the presynaptic terminals of the neuron i. The activation
triggers an influx of Cl− which reduces the calcium concentra-
tion in the presynaptic terminal, leading to a reduction of pre-
synaptic vesicle release. As a result, the synaptic efficacy de-
creases (Wu and Saggau 1994; Ohliger-Frerking et al. 2003;
Sun et al. 2006; Olsen and Wilson 2008). The effect of pre-
synaptic inhibition is described by the variable αr, k:

dαr;k

dt
¼ −αr;k

τ r
þ gr;ki∑

l
δ t−tl;k
� �

; ð4Þ

where the subscript r indicates the target receptor, τr is the time
constant of the variableα for the receptor r, gr, ki is the synaptic
conductance between neurons k and i for the receptor r, and tl, k
is the time of the l-th spikes of the neuron k. The time scale of
the presynaptic inhibition is dominated by the dynamics of the
targeted GABAergic receptors on the presynaptic neuron i.
Therefore, we used GABAA’s (τr=5 ms) and GABAB’s
(τr=100 ms) time constants for τr in Eq. (4). The normalized
calcium concentration, [Caij], at the presynaptic terminal of the
neuron i is modulated by αk in the following way:

Caij
� � ¼ 1− ∑

r;k
αr;k ; ð5Þ

where [Caij] is limited between 0 and 1.

2.4.4 Short-term-depression

Additionally, we modeled short-term-depression (STD), which
describes the reduction of available vesicles following each pre-
synaptic spike and the recovery of the vesicles with a long time
constant (Abbott et al. 1997; Varela et al. 1997; Hempel et al.
2000). The effect of STD is described by the variableD, given by:

dDi

dt
¼ 1−Dið Þ

τD
−Di 1−pvð Þ∑

l
δ t−tl;i
� �

; ð6Þ

where τD is the time constant of STD, and pv is the proba-
bility of synapse vesicle release (Wang 1999). In our model,
pv = 0.5 and τD = 450ms. tl, i is the time of l-th spikes of the
neuron i. A previous study revealed that the field excitatory
postsynaptic potential is proportional to the presynaptic
calcium concentration to the power of 3.5 (Wu and
Saggau 1994, 1997). Putting both factors together, the syn-
aptic weight, wij between neurons i and j is modulated by
presynaptic inhibition and STD in the following form:

wij ¼ Caij
� �3:5Di: ð7Þ

We noted that the power of 3.5 is obtained from the mam-
malian neurons and the actual power for the insects may be
different. Therefore, we tested our model by changing the
power to 3.0 and 4.0. We found that the model behavior was
insensitive to the exact value of the power, and the overall
dynamics and the performance of the model still remained
the same (Fig. S1).

2.4.5 Afterhyperpolarization

The afterhyperpolarization was applied to all three local neu-
ronal types based on a previous study (Seki et al. 2010). The
afterhyperpolarization (AHP) current IAHP is given by:

IAHP ¼ Ca½ �sgAHP Vm−Vkð Þ; ð8Þ

where gAHP is the conductance that determines the magnitude
of the afterhyperpolarization current and Vk (= − 85mV) is the
reversal potential for potassium channels. gAHP is equal to 2.5
nS for PLNs, 0.4 nS for ELNs, and 0.01 nS for SLNs, which
experience almost no AHP as they have a high spontaneous
firing rate and a strong AHP would shut the neurons down.
[Ca]s is the calcium centration at the soma, which increases
following a spike and decays exponentially afterwards:

d Ca½ �s
dt

¼ −
Ca½ �s
τAHP

þ ∑
l
αAHPδ t−tl;i

� �
; ð9Þ

where τAHP (300 ms for PLN, 200 ms for ELN, and 50 ms for
SLN) is the time constant of the decay of the somatic calcium
concentration, and αAHP (equal to 0.5) determines the magni-
tude of [Ca]s increase following each spike.

2.4.6 The synaptic conductance

The synaptic conductance, gij, between the presynaptic neu-
ron, i, and the postsynaptic neuron, j, is the product of three
variables: the innervation strengths,Ri and Rj, and the synaptic
efficacy, pij:

gij ¼ ∑
n
RinRjnpij ð10Þ

where Ri represents the innervation strength of i in the glomer-
ulus, n, shown in Table 1A. pij represents synaptic efficacy,
listed in Table 1B. Innervation strength relates to the relative
density of neural arbors in a given glomerulus. The product of
the innervation strengths of two neurons in said glomerulus
gives an estimate of the number of synapses the neurons can
form in the glomerulus. Synaptic efficacy indicates the strength
of a single synapse. Therefore, the product of Rin, Rjn,and pij
represents the overall synaptic conductance, or the connection
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strength between the two neurons. We demonstrate how syn-
aptic conductance is calculated in two following examples.

Example 1: ORN to PLN #1 in glomerulus A.

gORNA;PLN#1
¼ RORNA � RPLN#1 � pORNA;PLN#1

¼ 1� 0:5� 0:7 ¼ 0:35 ð11Þ

Example 2:

The efficacy of the PLN #1 to SLN #1 connection targeting
GABAA receptors. (please refer to Tabel1)

gPLN#1;SLN#1
¼ ∑

all glomeruli
RPLN#1 � RSLN#1 � pPLN ;SLN for GABAA

¼
�
1� 0:5� 0:98þ 1� 0:5� 0:75þ 1� 0:5� 0:33þ 1

� 0:5� 0:42þ 1� 0:5� 0:38þ 1� 1:3� 0:3þ 1� 1:6

� 0:47þ 1� 1:4� 0:84þ 1� 1:6� 0:77þ 1� 1:4

� 0:76
�
� 0:1 ¼ 0:6044

ð12Þ

2.5 Discrimination improvement score

To investigate the role of LNs in odor identity discrimination,
we need to compare the neuronal responses of ORNs and PNs
to pairs of similar odors. The response of ORNs to an odor
could be quantified as a vector in 10 dimensional space, in
which each dimension corresponds to the firing rate of an
ORN. The Euclidian distance, dORN, between the vectors of
the two odors represents the difference between them.
Likewise, we can also quantify the response of PNs to an odor
as a vector in 10-dimensional space and measure the Euclidian
distance, dPN, between the vectors of the two odors. To mea-
sure whether the model circuit discriminates similar odors at
the PN level better than at the ORN level, we calculated the
discrimination improvement score, defined as Δd = dPN −
dORN, for each odor pair within the same odor group. A posi-
tive Δd indicated that the circuit improved odor discrimination
because it was better at the PN levels than at the ORN level,
while a negativeΔd indicated the opposite. There were 45 odor
pair combinations in each group, giving rise to a total of 135
pairs of similar odors in the three groups. To assess how the
innervation patterns of LNs influence odor discrimination, we
compared Δd’s with different types of LN innervation pattern.

2.6 Similar odor discrimination task

In addition to investigating how LNs increase the distance be-
tween different odors using the discrimination improvement
score as described above, it is important to examine, when taking

the intrinsic noise and trial-to-trial variability into account,
whether our model circuit still improve discrimination between
similar odors. First, we chose an arbitrary odor A and recorded
the PN responses to A for 10 trials. Next, we performed another
10 trials with randomly selected odors from the same group (but
exclude the odor A). The PN responses to a given odor in one
trial can be viewed as a point in a high dimensional space with
each dimension representing the response of one PN (Fig. S2).
Ideally, the 10 points that corresponded to the 10 trials of odor A
would be very close to each other and far away from the other 10
points that corresponded to the 10 trials of different odors.
However, due to the noise and variability, there was overlap
between the distributions of the two sets of points. To quantify
how well the system could separate the two sets of points, we
chose an odor A point arbitrarily and set a distance r as the
discrimination criterion. Any point that fell within the distance
r from this point was classified as odor A, and all other points as
not odor A. Next, we calculated the true positive, true negative,
false positive and false negative numbers. These four numbers
gave us one data point on the ROC (receiver operating charac-
teristic) plot. By varying the distance criterion r (= 10, 20, 30, 40,
50, 60, 70, 80, 90, 100 Hz), we obtained multiple points and
plotted a ROC curve. We repeated this procedure ten times and
each time we randomly selected an odor as the odor A. Finally,
we calculated an averaged ROC curve from the 10 repeats, and
we selected the optimal criterion from the averaged ROC curve
to make a confusion matrix.

2.7 Odor pulse frequency

Following the observations described in (Riffell et al. 2014),
we tested whether the model circuit was sensitive to the odor
pulse frequency.,The odor pulse stimulus was simulated as
intermittent pulse input to ORNs. For an odor pulse stimulus
of x Hertz, the input was turned on every 1/x seconds, and
turned off 1/2x seconds afterwards (Riffell et al. 2014). As a
result, the odor stimulus always presented for half of the time,
regardless of frequency. As described in the Results section,
we found that the response of PNs decayed across consecutive
odor pulses. To quantify the decay, we measured the decay
rate as follows. First, the peak of PN response during each
input pulse was identified. Next, the sequence of peaks over
time was fitted by a linear function y = Ax + B, where x repre-
sented the time of each peak and ywas the PN peak firing rate.
A and B were the fitting parameters. We defined the absolute
value of the slope, A, as the PN peak decay rate.

2.8 Parameter tuning

The proposed model involved a large number of parameters,
including the membrane properties of each neuron type, the
synaptic strength between connected neurons, and other synap-
tic properties.We determined these parameters by the following

J Comput Neurosci (2020) 48:213–227218

Author's personal copy



strategy. We first constructed a simple network containing only
one single glomerulus with one neuron of each type. Using this
simple network, the synaptic efficacy, pij; parameters associated
with STD and AHP; and membrane properties of all neuron
types except ELN were determined by reproducing the effect
of odor-pulse-induced response decay (Riffell et al. 2014), and
by fitting the input-output curve to an empirical input gain
model introduced in a previous study (Olsen et al. 2010):

PN ¼ Rmax
ORN 1:5

ORN 1:5 þ k1:5
; ð13Þ

where PN refers to the response of an individual PN to an odor
stimulus, and ORN is the individual presynaptic ORN re-
sponse to the same stimulus. The equation contains two fitting
parameters: Rmax represents the maximum odor-evoked PN
response, and k represents the level of ORN input that produces
a half-maximum response of the PNs. The power of 1.5 was
pre-determined based on a previous study (Olsen et al. 2010).

Finally, the parameters for the ELNs were determined by
reproducing the PN response broadening described in previ-
ous studies (Hallem and Carlson 2006; Bhandawat et al. 2007;
Olsen et al. 2007; Shang et al. 2007; Huang et al. 2010). No
synaptic efficacy or membrane parameter was changed when
we tested the ability of the network to determine odor distance
and discriminate between similar odors.

2.9 Experimental design and statistical analysis

This study consists of four sets of simulated experiments. The
method used in calculating the firing rate is described in the Fig. 2
legend. The experimental design of “Odor pulse frequency dis-
crimination” is described in the subsection “Odor pulse frequen-
cy” above, and in the legend of Fig. 3. The experimental design
of “Response enhancement by the GABA antagonist” is provid-
ed in the legend of Fig. 4, and the statistical methods used for
analyzing the data can be found in the Results section describ-
ing Fig. 4. The experimental design of “Discrimination be-
tween similar odors” is described in the subsections
“Artificial odor stimuli”, “Local Neurons innervation pat-
terns”, and “Odors identity discrimination” above. The sta-
tistical methods used for analyzing the results are described
in the Fig. 5 legend. The experimental design of “PN re-
sponses broadening” can be found in the Fig. 6 legend, and
the statistical methods used for analyzing the data are pro-
vided in the Results section describing Fig. 6.

2.10 Code accessibility

The model source code can be accessed at modelDB,
url= http://modeldb.yale.edu/238959.

3 Results

3.1 Model network and neural activities

In the present study, we designed and built a scaled-down
network model of the insect AL containing three types of
LNs with diverse innervation patterns and short-term depres-
sion at the ORN to PN synapses (Fig. 1). We tested the model
circuit by stimulating it with randomly generated odor stimuli
and found that the general responses of each neuronal type
were consistent with the experimental observations (Fig. 2). A
large portion of the local neurons (PLNs and ELNs in the
model) respond to the odor stimulus, while the spontaneous
local neurons (SLN) exhibit the opposite activity pattern.
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Fig. 2 Representative neural response of the model to an odor stimulus.
The spikes raster and average firing rates of all neuron types from one
glomerulus (Glomerulus A). The model circuit was stimulated by the
odor #1 in the odor map (Fig. 1c), for t = 500 ms. The activity of each
neuron type for 10 repeated trials is shown. Each vertical tick represents
one spike, and each row of ticks displays the spike activity in one trial.
Curves indicate the average firing rate from the 10 trials shown. Most
neurons exhibited transient responses to the odor stimulus, except for
SLN, which exhibited spontaneous activity, which paused when the odor
was presented. Firing rates are calculated by using a sliding window with
a size of 50 ms and a time step of 25 ms
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3.2 Odor pulse frequency dependent responses

The proposed model was able to produce frequency-dependent
responses to odor pulses, an observation that was suggested to
be related to the ability of moths to locate the odor source
(Riffell et al. 2014). We delivered the odor stimulus in the form
of repetitive pulses of different frequencies (from 1Hz to 10 Hz)
and observed that PNs responded with bursts of activity
matched the time-course of the stimuli (Fig. 3a). We further
observed that peak responses were weaker for higher frequency

stimuli and that peak heights decay with time. Interestingly, the
peak height decay rate, as measured by the slope of peak firing
rate versus time, increases with odor pulse frequency (Fig. 3b).
Standard deviation of fitted coefficients (a and b in the linear
equation y = ax+b) in Fig. 3b are: a = −1.01±1.36, b = 46.2±3.33
for 1 Hz, a = −11.9±7.56, b = 39.3±3.70 for 5 Hz, and a = −17.9
±3.95, b = 37.7±2.11 for 10 Hz.

To test which dynamic property of the model contribut-
ed to the frequency-dependent response decay, we mea-
sured decay rate under three conditions: removal of
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Fig. 3 Odor pulse frequency
discrimination by the model
circuit. a Representative PN
responses to the same odor source
with different odor pulse
frequencies. Each row displays
the trial-averaged (N = 100) PN
firing rate in one glomerulus. b
PN peak responses, averaged
across all glomeruli, to the same
odor source (as in panel A) for
three different odorant pulse fre-
quencies. Gray lines represent the
linear fitting of the data points. c
Decay rate of PN peak activity,
represented by the slope of the
line of best fit (shown in B), as a
function of odor pulse frequency.
In the normal (control) condition
(black circles), the absolute value
of the decay rate increased with
the odor pulse frequency.
Removal of GABA synapses
(gray stars) or short-term depres-
sion (STD) (dark-gray circles)
only slightly affected the decay
rate. However, the removal of
both GABA and STD (light-gray
circles) completely abolished the
effect. Error bars indicate the
standard deviation of the data
from 30 odors
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GABAergic connections, removal of STD, or both. Our
results revealed that while removing either component
slightly affected the decay rate, removing both completely
abolished frequency-dependent response decay (Fig. 3c).
Moreover, this effect is stronger for higher odor frequen-
cies. The results suggested that the interaction between the
two components is crucial for the model’s ability to dis-
criminate odor pulse frequency.

3.3 Response enhancement by the GABA antagonist

Recent studies in Drosophila demonstrated a GABA receptor
antagonist reduced the response of some PNs to odor stimuli
(Olsen et al. 2010; Riffell et al. 2014), which is in opposition
to the expected disinhibition, as inhibitory LNs suppress PN
activity via presynaptic inhibition (Olsen and Wilson 2008;
Okada et al. 2009; Wang 2012). Our model was able to repro-
duce the diverse responses of LNs upon treatment with a
GABA antagonist (Olsen et al. 2010; Riffell et al. 2014;
Raccuglia et al. 2016). We measured peak PN activity over
100 trials and calculated the mean as a function of peak ORN
activity with or without a GABA antagonist (Fig. 4). To visu-
alize trends, the data were fit by eq. (13) using the non-linear
least squares method. We found that PNs, without strong SLN
innervation exhibited weaker activity upon treatment with a
GABA antagonist than without (Fig. 4c and d). This result is
consistent with the idea that GABA antagonists increase neu-
ronal responses due to reduced inhibition. However, we also
found that PNs, with strong SLN innervation developed stron-
ger activity upon treatment with a GABA antagonist than
without one (Fig. 4a and b), a phenomenon that has been
previously observed (Riffell et al. 2014). We further found
that the GABA-antagonist-dependent response enhancement
was the result of interaction between STD and SLN. This was
evident from the distinct availability of presynaptic vesicles,
with or without GABA, when strong SLN innervation was
present (Fig. 4e). On the other hand, when there was no strong
SLN innervation to a glomerulus, no significant difference in
the availability of the presynaptic vesicles was observed with
or without GABA (Fig. 4f). We discuss the underlying mech-
anism in detail in the discussion. Each data point shown in
Fig. 4 was averaged over 100 trials, and the error bars shown
in Fig. 4a and c are the standard error of the mean. To test
whether the PN responses are significantly different between
the w/ GABA and w/o GABA conditions, we used the paired
t-test for each pair of data points. The P values with
Bonferroni correction are 1.00, 1.00, 1.00, 1.00, 2.51 × 10−3,
3.62 × 10−25 and 2.24 × 10−45 (Fig. 4a, from left to right);
8.40 × 10−10, 5.30 × 10−6, 1.00, 2.60 × 10−9, 8.30 × 10−15,
5.21 × 10−17, and 1.56 × 10−15 (Fig. 4c from left to right).
The mean squared errors for the curve fitting are 142.1 (w/
GABA) and 22.7 (w/o GABA) in Fig. 4a; 94.0 (w/ GABA)
and 87.9 (w/o GABA) in Fig. 4c.

3.4 Discrimination between similar odors

In addition to distance discrimination, we also tested how the
model network improved discrimination between similar
odors, which are represented by similar ORN activation pat-
terns. Based on a previous study (Hallem and Carlson 2006),
which demonstrated that odorants containing the same func-
tional groups activate a similar subset of glomeruli, we gener-
ated three groups of artificial odors with each group contain-
ing 10 odorants that activate the same subset of ORNs with
similar normalized peak firing rate (see Methods)(Fig.
1c). As LNs propagate information between glomeruli
and modulate PN responses to each odor input, we there-
fore tested whether the innervation patterns of LNs are
critical to odor discrimination. To this end, we calculated
the discrimination improvement score of the model with
various LNs innervation patterns. We tested random or
patterned innervation for each of the three LN types,
which gave rise to a total of eight different innervation
pattern combinations (Table 3).

We first tested discrimination improvement for PN output
and ORN response for the four innervation combinations
(Table 3). For each innervation combination, we tested all
135 similar odor pairs and examined the distribution of the
discrimination improvement scores. We found that odor dis-
crimination of PN output was better than those of ORNs under
all conditions (Fig. 5a), suggesting that the inclusion of LNs
always improves odor discrimination, regardless the innerva-
tion pattern. The paired t-test result of Fig. 5a: t value = 28.1, p
value = 6.71 × 10−137 between patterned PLNs and Random; t
value = 28.2, p value = 5.59 × 10−138 between patterned PLNs
and patterned ELNs; t value = 30.8, p value = 6.06 × 10−158be-
tween patterned PLNs and patterned SLNs. Next, we com-
pared the difference in discrimination performance between
each innervation pattern combination listed in Table 3. Our
result showed that the performance of a patterned PLN net-
work is significantly better than that of all other combinations
(Fig. 5b, c, d). The mean values of the distributions in Fig. 5b,
c, d are significantly different from 0 as verified by one sample
t test (t value = −28.1, p value = 6.71 × 10−137 for panel B; t
value = −30.8, p value = 6.06 × 10−158for panel C; t value =
−28.2, p value = 5.59 × 10−138 for panel D.) In conclusion, the
innervation pattern of PLNs significantly affects odor discrim-
ination, and this odor-correlated innervation pattern leads to a
better performance than random innervation pattern. On the
other hand, the innervation pattern of ELNs and SLNs show
no significant difference in odor discrimination from that of a
random pattern (Fig. 5a).

Due to the intrinsic noise in the neural circuits and the trial-
to-trial variability in the input spike trains, the PNs exhibit
different responses to the same odor in different trials.
Therefore, it is important to ask how such variability affects
the ability of the model circuit to discriminate one odor from
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other similar odors. To this end, we conducted the similar odor
discrimination task (seeMethods).We plotted the ROC curves
for different LN innervation patterns and calculated the con-
fusion matrices (Fig. 5e and f). We found that, in consistent
with the results presented in Fig. 5a–c, the patterned PLNs
gave rise to the best discrimination between similar odors.

3.5 PN response broadening

The proposed model also exhibited response broadening as
observed in several previous studies (Bhandawat et al. 2007;
Olsen et al. 2007; Shang et al. 2007; Huang et al. 2010), which
showed in several cases that there are more PNs responding to
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Fig. 4 Simulated GABA antagonist produce diverse PN responses. a
Peak PN activity as a function of peak ORN activity in a single
glomerulus that is strongly innervated by SLN. When all GABAergic
connections were turned off (w/o GABA), PN responses were
significantly lower than that when the GABAergic connections
remained intact (w/ GABA). b firing rates (black curves) and spike
rasters (ticks) of the trials shown in the panel E. Each row of spike rasters
represents a single trial. c As in panel A except peak PN activity is for a
glomerulus without SLN innervation. When all GABAergic connections
were turned off (w/o GABA), PN responses were significantly higher
than when GABAergic connections remained intact (w/ GABA). These
two glomeruli were stimulated by the same odor, and the innervations of
PLNs and ELNs to both glomeruli were randomly assigned. The response
of ORNs and PNs to the odor stimuli were transient, so their activities are

represented by peak firing rates. The data were fitted by eq. (13) (curves)
using the non-linear least square fit. Each data point indicates the mean
over 100 trials, and the error bars represent the standard error of the mean.
d firing rates (black curves) and spike rasters (ticks) of the trials shown in
the panel F. Each row of spike rasters represents a single trial. e The
fraction of available vesicles in the ORN-to-PN synapses, as a function
of time, under conditions strong SLN innervation as in panel A. The gray
area indicates the period of the odor stimulus. The weaker PN responses
in the w/o GABA condition, as indicated in panel A, is the consequence
of fewer available presynaptic vesicles before stimulus onset. f Same as in
panel E except without SLN innervation. The input strengths used in
panels E and F are indicated by asterisks in panels A and C, respectively.
Firing rates in panels B and D are calculated by using a sliding time
window with a size of 50 ms and a time step of 25 ms
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an odor than ORNs. This phenomenon is not favored by a
number of computational models, which suggest response
sharpening (or contrast enhancement) for better discrimination
(Cleland and Sethupathy 2006; Linster and Cleland 2010;
Cleland and Linster 2012). We tested our model by recording
ORN and PN responses to all odors, and discovered that all of
these odors elicited responses in more PNs than ORNs, exam-
ples of which are shown in Fig. 6a. Response broadening can
be attributed to the ELNs, which has been reported in several

previous studies (Hallem and Carlson 2006; Bhandawat et al.
2007; Olsen et al. 2007; Shang et al. 2007; Silbering and
Galizia 2007; Kazama and Wilson 2009; Huang et al. 2010;
Shlizerman et al. 2014). The ELNs that are activated by an
odor project laterally and excite PNs in glomeruli that do not
receive input from the given odor. The degree of broadening
can be measured by the effective radius of the response histo-
gram (see Fig. 6a legend). By comparing differences between
the effective radius of the network with or without ELNs, we
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Fig. 5 Discrimination of similar odors can be significantly improved by
patterned PLN distribution. aDistribution of discrimination improvement
scores for all odor pairs (within in the same group). The discrimination
improvement score is measured by the difference in the ability of PN and
ORN to discriminate between two given odors (see Methods). A positive
value indicates that LNs improve discrimination ability for similar odors.
We set the innervation pattern of given LN types (indicated by the
legends) to match that of the overall odor activation patterns, and tested
how discrimination between similar odor discrimination can be
improved. PLNs with patterned innervation produced the greatest
improvement in discrimination. b Distribution of discrimination
improvement scores for all odor pairs (within the same group). We
compared networks with patterned PLNs to those with random PNLs.
The overall positive score values suggest that the former performs
better than the latter. c and d are similar to (B), but for patterned PLNs

compared to patterned SLNs and ELNs, respectively. The vertical dash
line indicates 0 discrimination improvement, and the arrow indicates the
mean value of distribution. The result suggests that a network with
patterned PLNs results in overall better discrimination ability compared
to networks with patterned SLNs or ELNs. e Receiver operating
characteristic (ROC) curves for the similar odor discrimination task.
Each curve depicts the true positive rate (TPR) as a function of the false
positive rate (FPR) in the task for a given LN innervation pattern. The
result indicates that the patterned PLNs gives rise to the best similar odor
discrimination. The error bars represent the standard error of the means. f
The confusion matrices for the optimal discrimination criteria in the sim-
ilar odor discrimination task for patterned PLNs and patterned ELNs. The
optimal criteria were determined by selecting the points that were closest
to the upper left corner in the ROC plot from each curve
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found that the presence of ELNs significantly broadened PN
response to the odors (Fig. 6b). We also tested the effect of
ELN innervation pattern on PN response broadening by

comparing the PN response with patterned or random ELN
innervation. We found that patterned ELN innervation in-
duced a broader PN response than that by random ELN inner-
vation (Fig. 6b). The mean values of the distributions in Fig.
6b are significantly different from 0 as verified by one sample
t-test (t value = 5.56, p value = 1,39 × 10−7 for ELN off; t val-
ue = 5.64, p value = 9.87 × 10−8 for ELN random.).

4 Discussion

In the present study we proposed a neural circuit model of the
insect AL featuring three local neuron types, specific local
neuron innervation patterns, and presynaptic short-term de-
pression. Interactions between the three features give rise to
complex neuronal responses that resemble several observed
characteristics of activity in the insect AL. Ourmodel suggests
that these characteristics are not independent of each other, but
are correlated due to the underlying neural mechanisms and
some functional requirements. We discuss their correlation
below.

4.1 Odor pulse frequency dependent response
requires STD and presynaptic inhibition

Odorant molecules propagate in a plume-like structure and
animals utilize this feature to track the odor sources as well
as to determine odor distance (JohnMurlis et al. 1992; Huston
et al. 2015; Riffell et al. 2014). Odor plumes are perceived by
the ORNs as intermittent odor stimulations, with a frequency
depending on the distance from the odor source (Riffell et al.
2014). We showed that the proposed model is able to turn the
intermittent ORN inputs into a decaying PN response as
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Fig. 6 The model circuit shows broadened PN responses compared to
ORN responses. aWe plot the normalized peak firing rates of ORNs and
PNs for all glomeruli (ordered by the firing rate) for five randomly chosen
odors. For PNs, the firing rates are plotted for the network with ELNs or
without ELNs (w/o ELN). To quantify how the odor responses are
broadened at the PN level, we calculate the effective radius (ER) of these
histograms. The effective radius, as represented by the dashed lines, is
defined as the center of mass with the position x representing the order of
the glomeruli as an integer (from 0 to 9) and the mass representing the
normalized peak firing rate of the ORNs or PNs in each glomerulus. We
saw a response of PNs to odors in glomeruli where ORNs did not re-
spond, indicating a broadened response in PNs as has been previously
observed in several studies (Hallem and Carlson 2006; Bhandawat et al.
2007; Olsen et al. 2007; Shang et al. 2007; Huang et al. 2010). b The
distribution of effective radius differences. To assess the effect of ELNs in
response broadening, we calculated the difference in effective radius be-
tween networks with or without ELN for each odor, and plotted the
distribution of these differences (black). We also show the distribution
of the effective radius differences between networks with patterned and
random ELN innervations (gray). These results indicate that without pat-
terned ELN innervation, the broadening effect in PNs is reduced. The
mean of each distribution is indicated by arrows of the same color

Table 3 Note: This data
is mandatory. Please
provide

PLNs ELNs SLNs

1 Patterned Random Random

2 Random Patterned Random

3 Random Random Patterned

4 Random Random Random
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observed (Riffell et al. 2014), and the decay rate is input fre-
quency dependent.

Our analysis indicated that both STD and GABAergic
synapses are crucial for the input frequency dependent
decay rate. Interestingly, removing either STD or GABA
only produced a slight impact to the frequency dependent
decay rate, while removing both completely abolish this
effect. The underlying mechanism can be understood
through Eq. 7. This equation describes the dynamics of
the synaptic weight w, and therefore determines the re-
sponses of PN to the odor stimuli. Based on the equation,
w is influenced by the presynaptic calcium concentration
[Ca2+] (the target of the presynaptic inhibition) and the
STD variable D in a multiplicative way. [Ca2+] and D
are defined in Eqs. 4–6 and both variables follow similar
dynamics: they decay rapidly under high frequency stim-
uli and slowly under low frequency stimuli (Fig. S3).
Therefore, the weight w, as the product of [Ca2+]3.5 and
D, also follow the same dynamics. If we turn off the dy-
namics of [Ca2+] by making it a constant, w still maintains
the frequency dependent decay rate due to the effect of D.
Likewise, turning of STD alone does not produce a large
impact on the frequency dependent decay rate in w due to
the effect of [Ca2+]. Only turning off both would
completely abolish such effect. Interestingly, for lower in-
put frequencies, removing [Ca2+] or D produces a nearly
linear effect on w, while in the high input frequency re-
gime, the effect of removing [Ca2+] or D is more nonlinear
effect on w (Fig. 3d). This, again, is due to the nature of
the multiplicative relationship described in Eq. 7.

Note that for the odor stimuli with the same frequency, a
stronger stimulus (higher concentration) produces more deple-
tions in [Ca2+] and D, leading to a weaker PN response to the
next input pulse, or a larger PN response decay rate.
Therefore, the decay rate is roughly proportional to the input
amplitude.

4.2 Role of presynaptic inhibition in ORN sensitivity

Inferentially, based on our simulation, a neuron in the resting
state is not sensitive to an external stimulus because the neu-
ron can only be excited if the stimulus is stronger than a
certain threshold. In contrast, a neuron with a small spontane-
ous activity is highly sensitive to the stimulus because the
firing rate increases for any small input. Indeed, most ORNs
have spontaneous activity (de Bruyne et al. 1999a, 2001) and
they are highly sensitive to odorant stimuli. However, with the
presence of STD, spontaneous activity in ORNs quickly de-
pletes presynaptic vesicles in the ORN-to-PN synapses. As a
result, the synapses become highly depressed and the sensi-
tivity of PNs to odorant stimuli is significantly reduced. Our
model suggests that SLNs may play a role in resolving this
problem. SLNs activate spontaneously when there is no

odorant stimulus and they exert presynaptic inhibition on the
ORN-to-PN synapses. This inhibition prevents ORNs from
releasing synaptic vesicles and therefore no STD is induced.
When the system receives an odorant input, activated ORNs
excite PLNs, which in turn inhibit SLNs, leading to disinhibi-
tion of the ORN-to-PN synapses. The disinhibited synapses
can then fully respond to the odorant input until STD kicks in.
Without the effect of GABA, ORN-to-PN synapses will be-
come depressed before the odorant input and the frequency-
dependent response decay will not occur.

Based on this argument, ORNs with higher levels of spon-
taneous activity require stronger SLN innervation to suppress
the presynaptic activity. This is exactly the setting in our mod-
el, and led to inhomogeneous SLN innervation to each glo-
merulus and produced different responses to a GABA antag-
onist, as shown in Fig. 4. Each ORN-to-PN synapse receives
two sources of GABAergic inputs: SLNs and PLNs. In the
synapses without strong SLN innervations, STD is not sup-
pressed and the level of available presynaptic vesicles remains
low. In these synapses, the effect of PLNs is dominant, and
PLNs reduce PN activity after the odor onset. Adding a
GABA antagonist eliminates the effect of PLNs, and therefore
PNs exhibit stronger activity than in the condition without the
GABA antagonist. On the other hand, in synapses with strong
SLN innervations, the effect of SLNs is dominant, and the
synapses maintain high levels of available presynaptic vesi-
cles. The addition of a GABA antagonist eliminates the effect
of the SLNs and reduces the available vesicles, leading to a
weaker PN response after odor onset.

4.3 The innervation pattern of passive local neurons

Our model suggests that PLN innervation patterns correlate
with odor activation patterns at the glomerulus level. We
would like to emphasize that this model does not exclude
the existence of other PLN innervation patterns as they have
been found to be highly diverse (Chou et al. 2010). Moreover,
this model does not require an “exact” match between the
PLN innervation patterns and the odor activation patterns.
As described in Table 1A and in Methods, PLNs only need
to have stronger synaptic weights in the glomeruli that are
strongly activated by a specific odor group. Although the
available data is not enough to verify such a conclusion, it is
not unreasonable, from the perspectives of neural develop-
ment, because repetitive stimulation by certain odors may
promote growth of local neurons in activated glomeruli during
the developmental stages.

The next question is why patterned PLN innervation in-
crease dPN more than other types of LN innervation do? One
way to increase dPN is to ensure that PNs develop stronger
responses to the odors so that the PN response vectors become
longer. ORN-to-PN synapses are inhibited by SLNs, which
are, in turn, inhibited by PLN at the onset of an odor stimulus.
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Therefore, a strong PN response to an odor requires strong
activation of PLNs, which disinhibit ORN-to-PN synapses
via SLN. A PN can be strongly activated if its innervation to
the glomeruli overlaps with those activated by an odor. This
explains why the PN innervation pattern, which correlates
with the activation pattern of an odor group, can improve odor
discrimination within that group.

4.4 Excitatory local neurons

In the proposedmodel, ELNs had lateral excitation to PNs in the
glomeruli that were not activated by an odor. As a result, the PN
response to the odor was broadened compared to ORN activa-
tion (Fig. 6). Such response broadening has been observed pre-
viously (Hallem and Carlson 2006; Bhandawat et al. 2007;
Olsen et al. 2007; Shang et al. 2007; Silbering and Galizia
2007; Kazama and Wilson 2009; Huang et al. 2010;
Shlizerman et al. 2014), but its function remains unclear. Note
that, although PLNs also exhibited lateral inhibition to glomeruli
that were not activated by the odor, this inhibition occurred
presynaptically in the ORN-to-PN synapses and did not prevent
ELNs from activating downstream PNs.

4.5 Same odor with different concentrations

One challenging issue in modeling of olfactory system is how
different concentrations of one odor can be recognized as the
same odor rather than different odors. Although our model
does not consider this issue, it will be addressed in the next
developmental stage of the model. One solution is to imple-
ment normalization of the PN responses(Olsen et al. 2010).
This can be partially achieved by including pan-glomerulus
passive LNs, which integrate inputs from all ORNs. With
proper tuning and selection of synapse models, the activity
levels of this type of LNs can roughly represent the length of
a PN response vector, allowing the LNs to perform normali-
zation by suppression PN activities. However, it reminds to be
investigated whether such a normalization mechanism affects
other functions exhibited by our model.

In conclusion, the present study is significant in several
aspects: (1) the model explains how stimulus-frequency de-
pendent responses are produced by short-term depression, (2)
the model indicates that the inhomogeneous responses to a
GABA antagonist is a side-effect of the presynaptic inhibition,
as resulted from the requirements of odor sensitivity, and (3)
the model demonstrated that odor identity discrimination is
correlated with the innervation pattern of a certain local neu-
ron type.
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