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Abstract—Optical flow is the pattern of apparent motion in a visual 
scene produced by the relative movement between objects and an 
observer. Optical flow is used in many engineering applications such 
as optical odometry. A variety of optical-flow algorithms has been 
proposed in the past few decades; however, most of these algorithms 
involve complex computation, making them difficult to be 
implemented in neuromorphic systems that operate based on neural 
networks. Interestingly, studies have shown that insect visual systems 
are able to perform complex optical flow algorithms. Inspired by the 
classic Reichardt motion detection model proposed for insects, we 
designed a spatial-temporal filtering Reichardt (STR) model. This 
model computes optical flow based on simple filters in the spatial and 
temporal domains. The STR model is hardware friendly: it does not 
require time-consuming iteration processes nor computationally 
intensive multi-layer convolutional networks, which are typical in 
other optical flow algorithms. We systematically investigate the 
performance of the STR model with different parameters including: 
object size, speed, luminance, and filter forms. We also compare the 
performance of the STR model to the classical Farneback algorithm, 
and we demonstrate that the STR model is comparable to the 
classical algorithms while requiring much less computational power. 

Keywords—Optical flow, Drosophila, motion detection, bio-
inspiration 

I. INTRODUCTION  

 Motion detection of image is an important topic in 
computer vision. In the traditional approach, a number of CPU-
based algorithms such as Lucak-Kanade, Farnebäck, Horn-
Schunck and DIS [1]–[4] were proposed and they can estimate 
motion vector (optical flow) of each pixel from multi frames. 
The fundamental assumptions of most optical flow algorithms 
are (1) the intensity of pixel is a function of spatial and time, (2) 
the displacement of patterns between images are small and 
smooth, and (3) the luminance of scenario is constant. 
Therefore, the function can be expanded by Taylor series and 
the gradience of the function of pixel intensity is a moving 
vector (optical flow). The Lucak-Kanade algorithm compute 
the optical flow based on the partial derivatives of patches and 
the algorithm needs to solve the inverse matrix during the 
process. The Farnebäck’s method, on the other hand, fits the 
displacement of a local patch by quadratic polynomial and uses 
a symmetric matrix and a coefficient vector to describe the 
movement. More recent machine learning approach, such as 

Flownet, PWC-net, and RAFT [5]–[7], utilizes artificial neural 
networks to learn to calculate the optical flow.  
 The traditional approach requires complex computation 
such as curve fitting or matrix inversion that are difficult to be 
implemented in neural networks, while the machine learning 
approach requires a large number of neuron layers and is also 
computationally intensive. Taking the Flownet for example, it 
uses 6 convolution layers and 6 transpose convolution layers to 
estimate the optical flow. Therefore, both approaches are not 
suitable for low-powered computation on edge devices such as 
small drones. To address this issue, we design a hardware 
friendly optical flow algorithm that is inspired by the insect 
visual system.  
 In the past few decades, the motion vision of insects has 
been extensively studied and several models have been 
proposed to explain the underlying neural mechanisms. Among 
these models, the Hassenstein-Reichardt (HR) model [8] is the 
one mostly discussed. The HR model detects motion direction 
of objects by implementing asymmetric latencies between two 
photo receptors (Figure 1A). Although the HR model is simple, 
it requires a huge number of elementary circuits: four (up � 
down, down � up, left � right and right � left) for each pixel.   
 There are also a number of biologically realistic models 
proposed base on the HR model. For example, the Borst 2018 
model [9] is developed based on extensive experimental data 
and is able to reproduce many empirical observations. However, 
this model is more complex than the classic HR model (Figure 
1B) because it uses three processing units for each pixel and 
each direction, and a total of 12 units are required to cover all 
four directions for a given pixel.  

Therefore, in order to design an optical flow circuit 
model that has a decent performance while is sufficiently 
simple for implementation in custom-designed chips, we decide 
to develop a circuit model based on the classic HR model [9]–
[11].  

Our model extends the HR model by implementing a 
layer of spatial filters and a layer of temporal filters, and is 
therefore termed spatial-temporal filtering Reichardt model 
(STR model). The STR model is purely feedforward, 
computationally simple (no curve fitting and no matrix  
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Figure1. Biophysics models of the insect motion detector. A: The classical  
Hassenstein-Reichardt (HR) model. B: The Borst 2018 [9] model. C: Our spatial-
temporal filtered Reichardt (STR) model. 

 
inversion) and requires much fewer neurons and elementary 
circuits. Therefore, although the total number of operations per 
pair of frames in the STR model is comparable to the Lucak-
Kanade method, the nature of feedforward computation makes 
the STR model easier to be implemented in hardware.  

II. The STR model 

Each elementary circuit of the STR model (Figure 1C) 
processes a small patch (24x24 typically) of an input image. The 
circuit computes motion in the window with four compute layers. 
(1) The patch is first convolved by two different spatial filters 
(A1 and A2), which generate two channels of signals. (2) Each 
channel passes through a temporal filter which produces a 
latency (B1 and B2). (3) The delayed signal is then combined 
with un-delayed (un-filtered) signal from the other channel 
through multiplication (R1 and R2). (4) The model output is 
generated by computing the difference between the signals from 
the two channels and normalizing the difference by a factor H, 
which is a function of the average input intensity. The purpose 
of the normalization is to produce an output that is independent 
of the intensity of the object. The determination of the factor H 
is discussed in the next section. The four-layer of process can be 
described by the following four sets of equations: 

 

 

 

(4)  

 

The temporal filter in the second layer passes signals below 
a certain frequency range with a latency. The latency can be 
adjusted by changing the parameter  and the system only 
needs to store the signal in the last timestep. There is no need for 
storing long arrays of previous signals for large latency. 
Therefore, the system is hardware friendly. By combining the 
delayed signal from one channel and un-delayed signal from 
another channel through multiplication, the two channels (R1 
and R2) generate responses to the intensity changes caused by 
moving objects (Figure 2 top). 

The difference between the two channels arises from the 
phase difference in the Gabor filters which detect edges or 
textures at the different locations. Finally, R2 is subtracted from 
R1 and the circuit produces a positive responses for both edge-
passing events (on�off and off�on) when an object moves in 
the preferred direction (Figure 2 top).

To understand the characteristics of the STR model, we 
compare it with the widely used Farneback algorithm and the 
biologically realistic Borst 2018 model (Figure 2 bottom). The 
three models respond to the stimulus produced by a moving 
squire differently. The Borst 2018 model generates a sharp peak 
to the onset of the stimulus (the first edge) but not the offset of 
the stimulus (the second edge), while the Farneback algorithm 
responds to the entire square during its passing. The STR model, 
in contrast, responds mainly to the edge-passing events for both 
onset and offset. Therefore, the STR model is highly sensitive to 
edges in the images. 

A true motion detector should detect the direction of 
movement rather than the direction of intensity change. We test 
this by showing the STR model with four stimulus conditions: 
(1) a white square moving rightward in a black background, (2) 
same as in (1) but moving leftward (Figure 3 top), (3) a black 
square moving rightward in a white background and (4) same as 
in (3) but moving leftward (Figure 3 bottom). The STR model 
always produces a positive response to the rightward movement 
regardless whether the object is white or black. Interestingly, the 

   Figure 2. The sensitivity of the STR model to moving edges. Top: the responses of 
the R1 (A2B1, green) and R2 (A1B2, red) components and the output of the model 
(blue) to the stimulus produced by a moving square (black) in the preferred direction. 
The model generates a strong response to each event of edge crossing. The square has a 
size of 20x20 pixels and the moving speed is 1 pixel/ frame. Bottom: the responses of 
the STR model (blue), Borst 2018 model (red) and the Farneback algorithm (green) to 
the same stimulus (black) as in the top panel. The STR model is highly sensitive to 
moving edges. 
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STR model produces a negative response with the same 
magnitude if the object moves in the opposite direction. This is 
one of the important advantages of the STR model over other 
biophysical models because most of those models only respond 
to the preferred direction but not the opposite direction. 
Therefore, two sets of the elementary circuits are required if two 
opposite directions need to be detected, while only one circuit is 
required in our STR model. 

III. ANALYSIS AND TEST  

To compute the optical flow, a motion detector should be 
able to indicate not only the direction, but also the speed of the 
motion, and should be insensitive to the intensity of the objects. 
We analyze the peak response of the STR model to a moving 

square of various speeds. The raw response ( ) of 

the model is nearly linear to the velocity of the object but the 

absolute magnitude depends on the  of the Gabor filter, time 

constant  of the low pass filter and intensity of the object 

(Figure 4). A smaller  produces a steeper R versus velocity 

curve but with a smaller linearly region (Figure 4 top-left). The 

raw response R is also modulated by  in a similar fashion but 

with a larger  producing a steeper curve. Therefore, we can 

obtain a desired R versus velocity relationship by carefully 

choosing the values of  and . To produce the true optical 

flow which is independent of the image intensity, we normalize 
the raw response R based on the average input intensity as 
indicated in Equation (4). To determine the actual form of the 
normalization factor H, we observe the relation between the raw 
response of the model, the average input intensity I read off 
from the Gabor filters (A1 and A2) and the true speed v of the 
object. We found that the relation can be described by: 

                  

We find that  is a simple linear function and k=6. 
Therefore, the normalization factor is determined to be I6. By 
dividing the raw response by H, we recover the true speed of 
the object and the normalized response of the STR model is 
independent of the intensity of the object (Figure 4 middle-
right). A drawback of the model is that its linearity only covers 
the speed range between 1.0 and 4.0 pixel/frame. A simple 
solution to increase the speed range is to use different window 
sizes. We discover that a small window gives rise to a sensitive 
linear response to small speed, as indicated by a steep curve in 
the small speed range (Figure 4 bottom-left, green curve). A 
larger window can produce a linear response covering a larger 
speed range, but the response curve is relatively shallower 
(Figure 4 bottom-left, orange and blue curves). Based on the 
observation, we can combine two circuits with two different 
window size to cover a larger speed range while still 
maintaining the sensitivity to slow objects. 

 
Figure 3. the response of the STR model with different stimulus conditions. Top: 

White square moving in the black background. Bottom: Black square moving in the 
white background. Black curves: image intensity at the center of the window. Blue 
curves: the response of the STR model when object moves in the preferred direction. 
Green curves: the response of the STR model when object moves in opposite to the 
preferred direction. 

 
Figure 4. Response of the STR model as a function of the object speed with different 
stimulus or model parameters. Top-left: the raw response curve with different time 

constant . Top-right: the raw response curve with different  of the Gabor filter. 

Middle-left: the raw response cruve with different speeds and intensities. Middle-right: 
same as in the top-left panel but with normalized response, which is linearly correlated 
with the object speed and is insensitive to the intensity. Bottom-left: the normalized 
response with different window sizes. Bottom-right: the normalized response with 
different image resolutions. The x-axis indicates the velocity in the original images 
(128 x 128), not in the rescale resolutions. 
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However, constructing two motion detector arrays with two 
different window sizes means doubling the computational load 
of the system because the total number of operations is 
proportional to the pixel size of the image, not the window size. 
To reduce the computational load, we can use the same window 
size but with reduced resolution, creating an effective window 
with a large size. We test this idea with three different image 
resolutions (128x128, 64x64 and 32x32) and confirm that for 
the same window size (24x24 pixels), a large image resolution 
leads to a sensitive response to slow movement in a narrow 
speed range (Figure 4 bottom-right, blue) while a small image 
resolution leads to a response to the speed in a broader range 
(Figure 4 bottom-right, green).   

Finally, we test the STR model using the images from the  
Middlebury flow dataset [12] with the evaluation method 
proposed in KITTI [13]. We also perform the same test for the 
Farneback algorithm for comparison (Figure 5). The STR 
model produces a comparable flow error to the Farneback 
algorithm at the small-speed range, while producing a slightly 
larger errors at the large-speed range due to the narrower 
dynamical range of the STR model. The overall flow error is 
2.37% for the Farneback algorithm and 3.26% for the STR 
model. 

IV. DISCUSSION 

We demonstrate that the proposed STR model produce 
optical flow with decent performance. Most importantly, the 
STR model is computationally simple and only requires 
convolution, low-pass filtering, multiplication and subtraction 
in a feedforward fashion. These operations are relatively easy 
to be implemented in custom-designed neuromorphic chips.  

As the first version of the STR model, it still has room to be 
improved. Three approaches will be taken in the follow-up 
study. First, we will systematically test the effect of each model 
parameter including the type of spatial filter on the performance. 
This will provide us a picture on how optimal parameters 
depend on the stimulus properties such as object size, speed and 
texture. Second, we will implement a pyramidal approach by 
using 2-3 levels of STR detectors and each level process the 
same image with different resolution. This will greatly improve 
the dynamical range of the model. Third, we will design a 

learning algorithm so that the STR model can dynamically 
optimize itself based on the momentary stimulus properties in a 
changing environment.    
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Figure 5. End-point-Error (EPE) test with images from the Middlebury flow dataset 
[12]. Top-Left:  the optical flow from the Farneback’s algorithm. The color encodes 
the direction of the flow. Top-Right: the optical flow from the STR model. Bottom-
Left: EPE of the optical flow from the Farneback algorithm. The color encodes the 
magnitude of the error. The flow error, defined as the percentage of the pixels with 
EPE > 3.0 is 2.37%. Bottom-Right: EPE of the optical flow from the STR model. The 

flow error is 3.26%. 
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