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Abstract—Simulation of a spiking neural network involves 
solving a large number of differential equations. This is a 
challenge even for modern computer systems, especially 
when simulating large-scale neural networks. To address 
this challenge, we design a neuron model: the Integer 
Quadratic Integrate-and-Fire (IQIF) neuron. Instead of 
computing on floating point numbers, as is typical with 
other spiking neuron models, the IQIF model is computed 
purely on integers. The IQIF model is a quantized and 
linearized version of the classic quadratic integrate-and-fire 
(QIF) model. The IQIF model retains all dynamic 
characteristics of the QIF model with much lower 
computation complexity, at the cost of a limited dynamic 
range of the membrane potential and the synaptic current. 
We compare IQIF to other spiking neuron models based on 
their simulation speeds and the number of neuronal 
behaviors they can perform. We further compare the 
performance of IQIF with the leaky integrate-and-fire 
model in a classical decision-making network that exhibits 
nonlinear attractor dynamics. Our results show that the 
IQIF neurons are capable of performing computation that 
other spiking neuron models can do while having the 
advantages of speed. Moreover, the IQIF model is digital 
hardware friendly due to its pure integer operation and is 
therefore easily to be implemented in custom-built 
neuromorphic systems.  
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I. INTRODUCTION  

In computational neuroscience, dozens of spiking neuronal 
models have been proposed to account for experimental 
observations. Examples include leaky integrate-and-fire (LIF) 
model, quadratic integrate-and-fire (QIF) model, exponential 
integrate-and-fire model, Izhikevich model and Hodgkin-
Huxley model [1]–[6]. In order to accurately reproduce the 
complex neuronal behavior, a model is usually described by 
ordinary differential equations and solving these equations are 
computationally intensive.  

By contrast, in artificial intelligence, efficient computation 
is much more important than reproducing neuronal behavior. 
Therefore, the neuron models used in the artificial neural 
networks (ANN) are rather simple and usually non-spiking. 

Nevertheless, the advantages of computing with spiking neurons 
are still extensively discussed [7]–[9]. Owning to the potential 
of spiking neurons in ANN, several projects [10]–[14] on 
neuromorphic chips have also been carried out but with limited 
success primarily due to the complexity and cost of these 
systems.  

One step toward solving this issue is to develop a neuron 
model which is endowed with complex behavioral 
characteristics while being digital-system friendly so that the 
development of specialized hardware are much easier. To this 
end, we design a neuronal model called integer quadratic 
integrate-and-fire (IQIF). The IQIF model is a quantized and 
linearized version of the classic QIF model. We choose the QIF 
model because it is the simplest spiking model that exhibits 
nonlinear dynamics, which is key to many complex neuronal 
behavior. Our IQIF model exhibits six neuronal behaviors and 
can be computed purely based on 8-bit integer. In this paper, we 
demonstrate the characteristics and efficiency of the model, and 
show that a IQIF network is able to carry out the decision-
making task, one of the most fundamental functions of a 
biological neural network.  

II. THE NEURON MODEL AND ITS BASIC DYNAMICS 

The IQIF model is developed based on the QIF model, which 
is described by  

 

Instead of having a simple linear function as in the LIF 
model (Figure 1 top-left), the QIF has a quadratic function 
(Figure 1 top-right). The QIF model is only slightly more 
complex than the LIF model but can exhibit more number of 
distinct behaviors due to its quadratic function. We design 
the IQIF model by quantize and linearize the quadratic function 
as follows   
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Figure 1. The vs.  plots for four neuron models: LIF, QIF, EIF and IQIF. 

The intersections of the curve and the  line represent the equilibrium points of the 
models and the sign of the slope at each intersection indicate its stability. The LIF model 
has only one stable equilibrium point presenting the resting state, while the other three 
models have two equilibrium points with one stable and one unstable which represents the 
spike threshold. 

 The model has four main parameters a, b, Vr and Vt. The 
parameters a and b determine the slopes of the descending and 
rising part of (Figure 1 bottom-right), respectively. Due to 
the ability to independently adjust the two slopes, the behavior 
of IQIF is also similar to the exponential integrate-and-fire 
model (Figure 1 bottom-left). The parameter Vr is the resting 
potential that determines the stable equilibrium point of the 
membrane potential. The parameter Vt is the threshold potential 
that determines the unstable equilibrium point of the potential. 
The IQIF neuron fires an action potential when Vt is exceeded. 
After the maximum potential Vmax is reached, the potential is 
reset to the reset potential Vreset. In the current version, we set the 
reset potential same with the resting potential Vr. 

The parameter a plays the role similar to the leaky time 
constant in the LIF model. Specifically, a determines how fast 
the potential relaxes back to the resting potential (Figure 2). In 
contrast, a does not have a significant effect on the response 
curve of the model (Figure 3 top-left). The slope of the response 
curve, or the gain, can be adjusted by the parameter b (Figure 3 
top-right). This is due to the positive effect of b on the rising 
speed of the membrane potential once the firing threshold is 
exceeded. This effect is stronger for larger input and hence 
determines the slope of the response curve. The parameters Vr 
and Vt have a similar effect on the response curve. They 
determine how much input is required to fire a neuron and 
therefore affect the value of the rheobase of the response curve 
(Figure 3 bottom-left and bottom-right). These two parameters 
do not significantly affect the slope of the response curve.  

By understanding the effects of each parameter on the 
dynamics, we are able to generate a variety of neuronal behavior 
using IQIF. We discover that a single IQIF neuron is capable of 
producing six different behaviors, which include class 1 spiking  

Figure 3. The response curve (the f-I curve) of the IQIF neurons. Top-left: the curve is 

relatively insensitive to the parameter a. Top-right: The gain, or the slope of the response 
curve, of the IQIF neuron can be changed by the parameter b. Bottom-left: the resting 
potential Vr does not affect the gain but can change the rheobase of the response curve. 
Bottom-right: the spike threshold Vt has an effect on the response curve similar to Vr  

excitation, bistability, tonic spiking, burst spiking and delayed 
and integrator (Figure 4). By contrast, the classical LIF model 
exhibits only three behaviors. As a comparison, the Izhikevich 
model exhibits as many as 21 behaviors but with a cost of 13 
floating point operations per timestep [4], [5] (Table 1). By 
contrast, IQIF model only needs six integer operations. 

The dynamics of a spiking neural network is highly 
fluctuated due to the discrete spike events. This can be resolved 
by adopting the biologically realistic synaptic current, which 
typically exhibits an exponentially decayed form with a long 
time constant. This slow synaptic current is also crucial for 
forming working memory, a fundamental function of a neural 
network. Therefore, instead of using the commonly used short 
pulse, we implement the following form of the synaptic current 
: 

 

where  represents the synaptic weight,  the presynaptic 

spike time and τ the time constant of the synaptic current. Due 
to the integer characteristic of IQIF, the exponential decay 
performed by timestep-wise division drops much faster than it 
should be. To address the issue, the division is performed every 
log(7/8) ÷ log((τ − 1)/τ) steps, and this produces a current decay 
close to the correct decay rate. 

Next, we compare the simulation efficiency between IQIF 
and other neuron models. In non-parallel simulations, the run 
time grows in an O(N2) scale with N neurons in an all-to-all 
network. In parallel simulations using OpenMP, there is a small 
overhead when N is small but the run time improves 
dramatically with a large N. Comparing to other neuron models, 
IQIF runs significantly faster. Under single thread mode with 
N=100, IQIF (0.24s) is 7 times faster than the Izhikevich model 
(1.68s) and 5 times faster than float point LIF (1.21s) (Figure 
5). In multi-thread parallelization, IQIF is still much faster than 
other float point models (Figure 5). We have also implemented 
a quantized version of the LIF model (ILIF) and compared it 
with the IQIF model. We find that IQIF runs as fast as ILIF 
despite that IQIF is capable of exhibition more complex 
behavior. 

 
Figure 2. The membrane potential of a postsynaptic IQIF neuron (bottom) in 

response to the presynaptic input (top) for different values of the parameter a (left 
versus right). The membrane potential relaxes back to the resting state faster if a is 
larger. 
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Figure 4. The six distinct behaviors exhibited by IQIF. The upper bar in each panel 

indicates the stimulus protocol with the blue and red bars for the onset of excitatory and 
inhibitory stimuli, respectively. 

 

 There is a drawback of the IQIF model the users should be 
aware of. Due to the nature of integer operation, the response 
curve forms staircases when short integers are used. This 
problem limits the usable range of the input strength and output 
firing rate (Figure 6). Our tests show that in order to obtain a 
smooth response curve, operating on 16-bit integers is  
preferable and an 8-bit system is the minimum. The working 
range for the firing frequency of the IQIF neurons is between 0 
and 300 Hz. 

III. TESTS ON DECISION NETWORK 

To test the behavior of IQIF in neural networks, we 
construct a classical decision-making network, which consists 
of two excitatory populations (A and B) and one inhibitory 
population (C)(Figure 7). The function of this network is to 
make a decision on which of the two inputs (to the population 
A or B) is stronger. The classical decision network is 
characterized by attractor dynamics and exhibits winner-take-
all competition, in which the two excitatory populations 
compete against each other through feedback and feedforward 
inhibition when receiving inputs. The decision is made when 
the firing rate of either A or B reaches a preset value (decision 
threshold). This type of models has been used in a wide range 
of neural networks for a variety of cognitive functions [15]–

[18]. Moreover, the decision-making models reproduce 
empirical observations in many neurobiology studies and are 
thought to describe the underlying neural mechanisms of 
perceptual decision [19]–[24].  

In the present study we only use one single excitatory neuron 
in each of A and B, and use three inhibitory neurons in C. The 
decision network constructed with IQIF neurons does 
successfully make decisions about the input strength (Figure 7 
middle). For comparison, we perform simulations with a 
decision network made of LIF neurons with 50 neurons in each 
population (A, B and C) (Figure 7 bottom). Note that in order to 
increase the signal-to-noise ratio, we usually include dozens or 
hundreds neurons in each population. However, due to the 
limited dynamical range of IQIF neurons, a single neuron cannot 
receive too many inputs from highly activated neurons. 
Therefore, we limit the number of neurons in the decision 
network constructed by IQIF neurons. As show below, the IQIF 
neurons are still capable of exhibiting decent performance that 
is comparable to that constructed by a 150 LIF neurons. 

We further evaluate the decision performance, which is 
usually done by plotting the psychometric functions: the 
percentage of correct choices and the reaction time versus the 
difference between the strengths of inputs (Figure 8). The IQIF 
decision network performs comparably with the LIF one. 
Although the IQIF network has slightly lower percentage of 
correct than the LIF network does, the reaction time of the IQIF 
network is much faster than the LIF network at the condition of  
equal input. 

Figure 6. The response curve of the IQIF neurons with different integer bits. The 
IQIF neurons work well with integers of 8-bit or larger with a firing rate below 300 Hz 

Table 1. The number of behaviors performed by four neuron models, and the 
required number of operations (integer for IQIF and floating point for others) per 
iteration. LIF: leaky integrate-and-fire, EIF: exponential integrate-and-fire. IZH: 
Izhikevich. The numbers for LIF and IZH models are from [5]. 
Neuron 
Model Firing pattern number 

Number of 
operations per 

iteration 
LIF 3 5 

IQIF 6 6 

EIF 6 10 

IZH 21 13 

   

Figure 5. Run time of IQIF and other neuron models as a function of the number of 
neurons in an all-to-all network. The tests were performed with single thread (t=1), two 
threads (t=2) and four threads (t=4). The IQIF is faster than Izhikevich and LIF models 
and is comparable to quantized LIF (ILIF) in all conditions. 
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  Figure 7. The decision-making task. Top: Schematics of the decision network. Green 
lines represent excitatory connections and red lines are inhibitory connections. The 
population A and B receive inputs of strength S and S+ , respectively. Middle: The firing 
rates of neurons A (blue) and B (orange) in response to the inputs in three representative 
trials. The separation of the firing rates of A and B indicates that the decision is made. Bottom: 
Same as in the middle row but for the LIF network. There are 50 neurons in each population 
of A, B and C. Therefore, the firing rates appear smoother than the IQIF network, which has 
only one neuron in each of A and B, and three in C. 

IV. DISCUSSION 

In this paper, we demonstrate that the IQIF model exhibits 
a number of distinct behaviors while does not require a large 
number of operations per timestep. The model operates purely 
on integers and therefore runs much faster than other spiking 
neuron models. One advantage of the IQIF model is its rich 
dynamics. One IQIF neuron can exhibit behavior that requires 
2 or 3 LIF to perform. Therefore, we may be able to save the 
number of neurons in a network constructed by IQIF neurons. 
We will demonstrate this feature in follow-up studies. 
Furthermore, the IQIF model is digital hardware friendly and 
we have designed a prototype of neuromorphic chips that 
support the IQIF model [25]. The chip consists of two 
populations of IQIF neurons with configurable recurrent 
connections. The overall architecture comprise I/O devices 
(input/output stream buffers), a hierarchy-population 
scheduler, a top controller, and two neuromorphic processing 
units (NPUs), which contain 32 neurons and 128 IQIF neurons 
separately [25]. 

Further analysis will be conducted in follow-up studies 
to optimize the IQIF model and to compare its performance 
with other spiking neuron networks in various tasks.  

 

 
Figure 8. The psychometric functions of the decision task performed by decision 

networks made of IQIF or LIF neurons. Top: Accuracy (percentage of correct) as a 
function of the difference between the input currents. Bottom: Reaction time as a 
function of the difference between the input currents. IQIF neurons perform comparably 
with the LIF neurons 
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