Chapter 6 X-ray Diffraction

X-ray Diffraction

Picture is worth a thousand words
Visual image
Microscope

X-rays cannot be focused by lenses to form an image of a molecule.
Reflected from the surface of an object
Transmitted through the object

X-ray are scattered from a regular repeating array or
molecule to give a pattern that represent the
macromolecular order and structure.

The structure must be reconstructed using mathematics as the lens to transform
the pattern back into the original structure. 1



Light Microscope

-— Ocular lens

Obijective lens
Sample

=-— Light source

Figure 6.1 The light microscope. A
microscope forms an image by fo-
cussing the light scatiered from a
sample, such as a melanophore on a
slide, through a series of lens. The
image can be magnified infinitely, but
the resolution is limited by the wave-
length of visible light to about 0.2 mi-
crons. [Courtesy of P. McFadden. ]
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Analogies Between Light Microscopy and X-ray Diffraction.

Certain analogies between these two methods of using scattered radiation for
determining structure are shown here. The object (sample) in both set-ups scat-
ters some of the incident radiation into a diffraction pattern.

In the ordinary microscope there is no need to record the diffraction pattern
because the scattered light can be focused by the objective lens to give a mag-
nified image of the object under study. The closer this lens is to this object, the
wider the angle through which scattered radiation is caught by the lens. Thus,
if this distance is small, most of the diffracted light will be caught by the objec-
tive lens and focused to form an image. The rest of the radiation is lost to the

surroundings.
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X-RAYS

measurad by a counting device or
X-ray sensitive film

{b) X-RAY DIFFRACTION

With X rays the diffraction pattern has to be recorded electronically or pho-
tographically (as indicated schematically here),

<ecause X ravs cannot be
millﬁﬁd hg any kngwn lens. Therefore the recombination of the diffracted

beams that is done by a

lens in the microscope must, when X rays are used, be

done mathematically bz a crxstalloqraeher with the aid of a computer. As

stressed later (Chapter 5), this recombination cannot be done directly because
the phase relations among the different diffracted beams cannot usually be
measured directly. However, once these phases have been derived, deduced,

guessed, or measured in

directly (which is what this book is mostly concerned

with), an approximate image of the scattering matter can be formed.

S



6.1 Structures at atomic resolution

® This technique requires three distinct steps
1) Growing crystal
2) Collecting X-ray diffraction pattern from the xtal

3) Constructing and refining a structure model to fit the X-ray
diffraction pattern.

® Atomic resolution:

The positions of each atom can be distinguished from those of all
other atoms in 3D space.

The closest distance between 2 atoms is “covalent bond”
approximately 1.2A.

o Two limitations

The atoms of its molecules held rigidly.
Each molecule in the system must have identical conformations.
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Atomic Resolution

Any fluctuation in the positions of the atoms in the molecules or any
significant deviations of molecule from a signal conformation

A averaging of the structure
Blur our vision/reduce the resolution

Limit of resolution 2d sin ®=n A

L R=\/2 d=A\/2

Visible light (A=400 - 800 nm/5-10 ev)
X-ray (A= 0.1-10 nm/1-100A /102 to 105 ev/)

X-ray diffraction

The constructive & destructive interference caused by scattering
radiation from the regular repeating lattice of a single crystal to
determine the structure of macromolecules



Resolving molecules to the atomic level

0.4 nm

Figure 6.2 Resolving molecules to the atomic level. The information content in-
creases as structures are determined to higher resolution (in this case, lower
numbers are better). The 0.1 nm resolution structure of a dG-dC base pair in a
crystal of a DNA fragment show details of each atom in the molecule, as well as
the solvent structure surrounding the molecule. At 0.2 nm and 0.3 nm resolution,
the structure of the nucleotides are stull discernable, but by 0.5 nm resolution,
only the presence of the strongly diffracting phosphates of the backbone can be
unambiguously distinguished.
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Figure 6.3 Electromagnetic spec-
trum. Visible light falls in the wave-
length range of 400 to 800 nm, with
corresponding energies of about 5 to
10 eV. X-rays are shorter wavelength
(0.1 to 10 nm) and consequently
higher energy (10° to 10° eV).
[Adapted from J. A. Richards, Jr.,

F. W. Sears, M. R. Wher, and M. W.
Zemansky (1960), Modern Universit
Physics, Addison-Wesley, Reading,
MA, p. 600.]



6.2 Crystals
6.2.1 What is a crystal?

Quartz & Glass
Quartz: order, regular, symmetric & repeating
Glass: amorphous solid, disorder
Xtal can be cleaved, basic unit =unit cell
Symmetry operators: translation/rotation
Determine the structure of a crystal
= Determine the structure of the least symmetric component of the
unit cell.

Unit cell: basic unit/all unit cells within the xtal are identical

Asymmetric unit: no symmetry is aptly, ex: ap-dimer of Hb tetramgr



Cell dimension

Cell parameters C
a, b, c l
Y bV

a) 9 7
B,y -

*The edges of the unit cell defines a set of unit vector axes, a, b, c

*These vectors need not be at right angles, and the angles between
the axes are denoted as

o, between the bc-axes

B, between the ac-axes

v, between the ab-axes



Component of a Crystal
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Figure 6.4 Components of a crystal. The asymmetric unit is that part of the crys
tal that shows no symmetrv, A symmeltry operator (for example, a €, rotational
axis) generates the lattice motif. Repeating this motif by translation eenerates

the corners of the unit cell, which 1s the basic repeating unit of the crvstal lattice

Each level of the crystal, with the exception of the asymmetric unit can be
generated using mathematical operators

Solving a crystal structure requires only that we determine the
conformation of the atoms in the asymmetric unit
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e Crystal
Morphology

a

Orthorhombic P

Cubic P

Figure 6.5

3. Monoclinic” =<p. MonoclinicC

120°

Hexagonal P

Cubic [

a a

Cubic £

The 14 Bravais lattices in crystallography. | Adapted from G. H. Stout
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Symmetry

® PCF&I
P: Lattic points are found only at the corner
C: Lattic points are found only at the corner & the one face
F: Lattic points are found only at the corner & the 6 faces
I: Lattic points are found only at the corner & the center of the unit cell

Five Fold

rotation or screw axis defines a pentagonal face and since regular
pentagons cannot be packed in 3D without leaving gaps, we can not
define a unit cell with one face having five edges

Invert the configuration of a chiral center are not allowed in crystal of
biological macromolecules

Mirror symmetry with relates L & D molecules stereoisomers will
not be found in crystals of naturally occurring biological
macromolecules
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Space Group

Two orthogonal symmetry axes automatically defines a third
orthogonal symmetry axis

The symmetry axes in a unit cell need not all intersect in the center.
However, if two axes do intersect, the third axes must also intersect
2,2, (two perpendicular 2 fold screw axes)= 2,2, 2, or 2,2,2

If two axes do nonintersecting, the third axes must also
nonintersecting

Space Group /Shorthand abbreviation

L Rr Rr R+

L: lattice type
R: rotation

T: translation
Ex: P 212121

13



65 space groups

TABLE 6.1 SIXTY-FIVE POSSIBLE SPACE GROUPS IN MACROMOLECULAR CRYSTALS

Lattice Type

Possible
Bravais Lattices

Crystal Shape

Possible
Space Groups

Triclinic .
Monoclinic

Orthorhombic

Tetragonal

Trigonal

Hexagonal

Cubic

Il
5C

PG Lk

Bl

lj'.'l

R
(Rhombohedral)
.F)

Pl E

a+h#c¢

aF B #F y+90°
atb#c
a=y=90° 8B # 9%°
a¥Fb#c

n.:ﬁ. }a:\}{]"
a=b#c
;_t'zﬁ: '}.-..-. {}[:I"
a=b#c¢

a=B=90°y=120"
a=b=c¢
a=f8=y<120° (# 90°)
a=c#b
a=y=9%N° 8= 120

a=b=c¢

a=fg=vy=90°

Pl

P2, P2,.C2

P222, P2,2.2,, P2,2,2, P223,,

0222, €223, FR2. N5,
1223,

P4, P4,, P4,, P4, 14,14,
P422, P42,2,, P4,22, P4,2,2.

P4,22, P4,2,2, P4.2,2, P4.22,

1422, 14,22

P3.PY. P2,

P321, P312, P3,12, P3,21,
P3:12,P3;21,

R3, R32

P6, P6,, P6,. P6,, P6,, P6s.
P622, P6,22, P6;22, P6,22,
P6,22, P6:22

P432, P4,32, P4.32, P4,32,
F432, F4,32, 1432, 14,32
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Space Group

The lattices type along with the symmetry of the unit cell define the
space group of the unit cell.

The length & angles of the unit cell define the unit cell parameters,
and the space group along the unit cell parameters define the
crystal morphology.

Isomorphous
Different xtal that has identical unit cell lengths and angles

Their diffraction pattern should also appear to be very similar

A xtal is nothing more a single asymmetric unit, solve the
structure of a xtal, we need only solve the structure of the
asymmetric unit.

15



6.2.2 Growing Crystals

Crystallization is more an art than a science

Precipitate: bring the molecule out of solution

S :intrinsic solubility, dep. on temp, pressure, solvent
Supersaturation

Decreased the overall volume to less than half the original volume
Evaporating solvent from solution

Salting in & Salting out

lonic strength
Salting in: increase ionic strength, increase the solubility

Sating out: increase ionic strength, decrease the solubility

16



Mechanism of Crystallization

Concentration

O , O
®) G ®) Nucleation O Growth
O @)
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!

O
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o g0

Time (arbitrary units)

Figure 6.6 Mechanism of crystallization. The initial step in crystallization is the
nucleation of a minimum crystal lattice. This is a low probability step that occurs
in a supersaturated solution. The crystal grows by adding molecules to the sur-

face of the seed, and occurs at concentrations close to the instrinsic solubility S

of the molecule.
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Entropy difference
Highly ordered molecules in a crystal lattice have significantly lower entropy

Two molecules associate to nucleate the formation of a crystal lattice
The entropy difference between monomer and dimer states
A S°=-RIn2=-58J/mol
At four unit cell must come together in a highly cooperative manner to form a
stable and unique nucleation lattice.,
P212121 (4 equivalent positions),
The minumum for the formation of this nucleation lattice well be, 16
molecules and AS°=-RIn 16 =-23 J/mol

Only a single conformation in the crystal

There is an additional loss in conformational entropy during crystallization
Difficult to estimate

A large driving force --- supersaturation, above the S°, intrinsic solubility

Vapor pressure --- equilibrated

Reduce the solubility
18



6.2.3 Conditions for Macromolecular

Crystallization

® Purity
Biochemically pure--------- structure pure

® Crystallization of macromolecule
Shotgun
Different buffer/salt conditions

® Crystallization methods
Vapor diffusion
Microdialysis

19



Crystallization condition

TABLE 6.2 SCREENING SOLUTIONS IN SPARSE MATRIX METHODS FOR CRYSTALLIZING
PROTEINS AND NUCLEIC ACIDS

Crystallization Solutions

Salt Buffer Precipitant Molecules Crystallized
Proteins
None 0.1 MTns 2 M Ammonium sulfate Tropomysin
EcoR1-DNA complex
Monellin
0.2 M Na citrate 0.1 M Tris 30% Polyethylene glycol Lysozyme

(0.2 M Na acetate

Nucleic acids

12 mM Spermine,

20 mM Mg,
B0 mM Na*

0.5 mM Spermine,

15 mM Mg?",
2 mM BaCl,
2 mM CaCl,,
10 mM Mg

0.1 M Cacodylate

40 mM
Cacodylate
pH 7.0

pH 6.5

pH 7.0

(PEG)

30% PEG

10% 2-methyl-2,4-
dimethylpentane diol (MPD)

7% 2-Propanol

15% MPD

Myoglobin
Ribonuclease A
Insulin
Lysozyme
Pepsin

d(CG)' Z-DNA
G-quartet DNAs
DNA-adriamycin

Phe-tRNA

Group I intron
(from Azoarcus)
|2-Base pair RNA




Vapor diffusion

Hanging drop

Hanging drop

Sitting drop

Sitting drop

Figure 6.7 Vapor diffusion methods of crystallization. In the hanging drop
method of vapor diffusion, a sample in solution is suspended above a reservoir,
R, that contains a high concentration of a precipitant. The lower VAPOT pressure
of the reservoir draws water from the sample solution, §, to reduce the volume of
the sample, Vg, below its initial volume, V, Consequently, the concentration of
molecules in the sample solution, [S], increases to above the intrinsic solubility §°
of the molecule, resulting in precipitation or crystallization. In the sitting drop
method, the sample solution sits in a well rather than hanging suspended, but

At amrriea Gl e e b i
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Crystal in space

Figure A6.1 Comparison of the diffraction in-
tensity from crystals of isocitrate lyase grown in
space (on U.S. space shuttle STS-26 flight, trian-
gles) and on Earth (circles). Resolution limits are
labeled in angstrom units (0.1 nm).

Relative Intensity

0.0

T

" . s
:I- ! ! i Terestrial

100 50 38 32 28 25 298
Resolution (A)

How microgravity can improve the size and quality of protein crystals on

the space shuttle STS-26 flight in 1988

22



6.3 Theory of X-ray Diffraction

X-ray radiation
Wavelength: 0.1-10nm
~ covalent bond =1.2nm
Quantum energy: 8000ev
~ the energy of electrons in their orbital
Electron interaction energy is responsible for the scattering of X-rays

Electron density:
the # of electron in a given volume of space
Determines how strongly an atom scatters X-rays

Diffraction:

The interference of the scattered X-rays leads the phenomenon of diffraction.
All electromagnetic radiation as “waves”

Scattering & Interference

Scattering: the ability of objects to change the direction of a wave
Ex: the reflection from a mirror, “plane”
Ex: an object place in the path of a light 23



Huygen’s principle of diffraction

Every point along the wave front can be considered to be the origin of

a new wave front

Objects placed in the path of a wave front act as points of propagation

for new wave fronts.

The entirely new wave front is called a scattered wave.

l|' ""-\.H .:lil | :‘.'-.
/ P e
___.-" _l.-"lIl .-'-'Iﬂ =
i s s
(a)

Figure 6.8 Huygen's principle of dif
fraction. Each point in front of a
wavelront acts as a point of propaga-
tions tor a new wavelet which sums to
form a new wavefront. Each point in
front of the incident wavefront gener-
ates a wavelet having the same veloc-
ity as the wavefront, represented as a

sel okConcentric circlds emitted from
the point. The new wavelront 1s

formed by connecting [hu

of the wavelets from all points of
propagation.,
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Constructive & Destructive Interference of Scattered Waves

(a) y . g +
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Figure 6.9 Constructive and destructive interference of scattered waves. (a)
Two scattering points placed in front of an incident wavefront act as points of
propagation. (b) The amplitudes £ of the resulting wavelets from the scattering
points can sum to form a new wave with twice the amphitude along vectors 2£ in
(a). (c) Waves that are 180" out of phase annihilate each other to give a net am-
plitude of zero along vectors O n (a).



How X-ray diffraction is used to solve the structure of
molecules in crystals

The sum of the two waves propagated from A and B result in an
amplitude

that is dependent on the relative positions of A and B and is
also dependent on where the new wave fronts are being observed.

How the positions of atoms are determined by the diffraction of X-
rays

26



6.3.1 Bragg’'s Law

Reflection plan
All parallel

(1). Resolution
(2). The length of
the unit cell alone
the one axis

structive interference of the
difference between adjacer

eflected or scattered X-rays occurs when the path
planes (spaced by a distance d) is equal to some in-

2 (dsin®)

Path difference (PD)
2 (d sinB) = nA (d: space interval, 0: incident angle?7



There is a reciprocal relationship between the Bragg angle (0), and the
(d) between the reflecting planes

2 (d sinB) = nA

larger spacing of repeating units in a xtal, smaller diffraction angles

Determine the length of the unit cell along the axis by measuring the
Bragg angle

28



6.3.2 von Laue condition for Diffraction

X-ray diffraction is not as simple reflection from planes
atoms scatter X-rays in all three dimensions

0>0

6=0, no reflections

0=90° , no reflections

Laue equation | A=c (cos y- cos y,)
| A =ccosy, (if y equal to 90 degree)
v : angle between the scatted radiation and the row of the scatters

Y,: angle between the incident beam and the row of the scatters

29



A set of scattering atoms arranged in a regular array

Incident

~ beam
Ly d
' \‘\_,/ A

| A =ccosy

Figure 6.11 von Laue conditions for
diffraction. A set of scattering atoms
arranged in a regular array are spaced
by a distance ¢ along the vertical axis.
Constructive interference occurs
when the angle y of the scattered
beam relative to the crystal axis con-
forms to the von Laue conditions for
scattering. These conditions are anal-
ogous to Bragg's law when reflecting
pl;mu:& at each scattering atom
(broken lines) form an angle @ rela-
tive to the incident and the scattered
beams. The diffraction angle relative
to the incident beam is 26.

(if v, equal to 90 degree)

v : angle between the scatted radiation and the row of the scatterers

Y,: angle between the incident beam and the row of the scatterers

30



6.3.2 von Laue condition for Diffraction

Laue equation
| A =ccosy, (if y equal to 90 degree)
v : angle between the scatted radiation and the row of the scatterers

Y,: angle between the incident beam and the row of the scatterers

hA=a (cos a—C Cos ay)
KA=Db (cos - cos B,)

IA=c (cos y— cos y,)

31



1D crystal

First-order

L Zeroth-order

First-order

Second-order

| =n

Figure 6.12 An incident beam of
X-rays causes a set of scattering cones
from a one-dimensional crystal
aligned along the vertical axis. Each
cone makes an angle 26 relative to
the incident beam to conform to the
von Laue conditions for diffraction.
The intersection of each cone with a
piece of flat photographic film 1s an
arc. Each arc is a layer line represent-
ing the order of the reflection, the
integer index / in Eq. 6.6. In a three-
dimensional crystal, each axis of the
unit cell generates a set of concentric
cones, with the conical axes aligned
parallel with the crystallographic
axes.

L = 0, conforms to the conditions for diffraction, and yields a plane of

scattered X-ray, with 20=0

32



1D to 3D von Laue condition for diffraction

One-dimensional array
If the incident radiation makes an angle y, other than 90°

L =c(cosy—cosy,)

Expand to three-dimensional crystal
hA=a(cosa-—ccosa,)
KA =Db(cosp—cosf,)
| A =c (cosy—cosy,)

(h, k, 1)-

33



How do Bragg’s and the von Laue conditions relate?
Fig 6.11 is there reinforcement of the scattered X-rays in this diffraction ?

If so, we have a reflection & the van Laue condition must be satisfied.
hA=a(cosa—ccosa,) (6.8)
square
h*A?/a? = o? -20%0a,2+a,? (6.11) (o =COS a ; a,=COS Q)
k2)2 /b2 = Bz -2 B2B02+ Boz
12A2/c2 = y2 -2 YzYo 2 4 Yo 2
(h2/a+ k?/b%+ 12/c?)A2 = 4 sinz20
(h2/a2+ k2/b2+ 12/c?)2= 2 sinB | A

Bragg’'s and the von Laue conditions relate

(h?/a?+ k2/b?+ 12/c?)Y?2=2sinB0 /A =n/ A

Miller indices, (h,k,l): define the integer number of wavelengths that result
in an observed reflection from a 3D crystal.

A given set of Miller indices h,k & |, Bragg’s law and the von laue 34
equation are equal



Recording diffraction data using a photographic film

(b)
-— N =2 —
—— __‘.a-'fi‘zl—h"
— n=()—>
-I'.--_.-__--'L‘ T I B
B T e
/,._\\ —_—— ) ] ——
(¢) j
* - L g e & = @ [N N W
L ] *® @ [ ] 'EE K L I N N ]
e o 00 TR oo oo
o ® o o e ses e
e e o o
T8~ EEXEE.
Figure 6.13 Recording diffraction data. The reflecting cones from a crystallo- 35

graphic axis can be recorded using a piece of photographic film that is flat, cylin-
dricallv wrapped around the cones. or spherical (shown in the three fieures in (a)).



Bragg’'s and the von Laue conditions relate

As the crystal is expand to 3D, each additional dimension yields a set of cones
whose diffraction angle satisfies the von Laue conditions

The resulting points of resulting points of reflection can be seen by comparing
the intersection of a film plane with each set of cones from a 2D crystal

Each cones generates its own set of layer lines.

A sphere of reflections where each reflection is a point on the
surface of a sphere
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6.3.3 Reciprocal space and Diffraction
Patterns

Construction of a reciprocal (*) unit cell

\B

a-b planc

ol -

b-¢ plane b=

b

Figure 6.14 Construction of a reciprocal unit cell from a unil cell in real space. The lefi panel describes
the reciprocal axis a* as the scattering vector that is perpendicular to the b-c reflecting plane in the real
space unit cell (where the b axis points out of the plane of the page). Similarly, the ¢* axis is perpendio:

lar to the real space a-b plane. The angle relating the a* and ¢* axes is 8% (which is complementary to the|
real unit cell angle 8).

The reciprocal lattice is constructed using the scattering vector S

(b*), which is perpendicular to the reflecting plane (ac plane) with
with length “1/b”
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Reciprocal Real unit cell
unit cell

Real unit cell 2
a
Reciprocal unit cell

Reciprocal unit cells of large and small real cells.

a* =1/a, a*along a
a=B=7=90° == Db*=1/b, b*alongb
c*=1/c, c*alongc
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Relationship between unit cell parameters in Real space & Reciprocal space

TABLE 6.3 RELATIONSHIP BETWEEN UNIT CELL PARAMETERS IN REAL SPACE AND RECIPROCAL
SPACE

Lattice type Real Space Reciprocal Space

Orthorhombic

and higher _—
a o
symmetry a
1
b h
b
|
4
p
a =190 a* =90
3 =90 g Gi)
¥ Oy v o0
l 'L * | e J W
- = a*bh*c
v
Maonochnic
1 i -
asin g
|
b f
h
I
csin 8
a = Y0 o 9}
B+ 90 B* 180 i
v = 90 y* a0
: ; I B :
V | - = a*bh*c* sin B*
!
Irichnic
be sin a
a a*t = -
1.
ac s f3
h b
i.
ab sin y
|
cos f3 cos y COS &
o F 9 cos aF =
sin 8 sin vy
: : COS a Cos y — cos B
B+ 90 cos B

SN @ SN y

Cos wcos 3 — Ccosy

¥ # 00 Cosy = , 39
SN @ SIn 5

V V* = g*b*c*V1 — cos” a* — cos® B* — cos® ¥* + 2 cos a® cos B* cos y*




A precession photography
mimics spherical film by rolling of processing a flat piece
of film about the crystal axes.
This i1s undistorted diffraction pattern

A precession camera rotates both crystal and film in
concert to give a photograph in which the spacing and the
Intensities of the diffraction pattern are recorded in an
undistorted manner

Each precession photograph can be though of as a slice
through the sphere of reflection.
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Conditions for diffraction in reciprocal space

Path difference

Ewald Sphere: S=s,-s
The sphere of

reflections in the
reciprocal space Reflecting

~-plane

(h, )= (-1, 5)

(a) Thelengthof sisIsl=1/d,, )

Fig 6.15 Conditions for diffraction in reciprocal space. A point of origin O
for the scattered X-ray beam is defined at the origin of a umt cell of the recipro-
cal lattice. A point A is placed along the incident beam at a distance 1/nA from
0. A circle with a radius of 1/nA1s drawn with A at the center. The point where
the circle intersects the incident beam is labeled point B. Any other lattice point
L of the reciprocal lattice that intersects the circle represents a reflection in rec-
iprocal space. Bragg’s law is derived by defining the diffraction angle @ as the
angle OBL, and the trigonometric relationship between the scattering vector S
and the diameter of the circle. The vector LA is the direction of scattered beam 11
in real space. This is shown in (b) as the bold arrow extending from the origin O
and at an angle 20 relative to the incident beam.



Ewald Sphere:
The sphere of reflections in the reciprocal space

With a radius of n/A

Rotating the crystal allows a different set of lattice points to intersect
with the sphere to cause scattering

The length of S, scalltering vector is ISI = 1/d

In an X-ray diffraction experiment, the intensity of each reflections is
given by the intensity of a single scattering vector 1(S)

The molecular structure defines the measured quantity |(S)
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The reflection sphere in reciprocal space

Figure 6.18 The reflection sphere n reciprocal space. The extension of the
analysis in Figure 6.17 to a three-dimensional crystal is to draw a sphere with ra-
dius n/A. Each reciprocal lattice point that intersects the surface of the sphere
(filled points) 1s a reflection in reciprocal space. The points included in the vol-
ume of the sphere of reflections (open points) represent points along the surface
of smaller concentric spheres.
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The reflection sphere in reciprocal space

Figure 6.16 The reflection sphere in reciprocal space. The extension of the analvsis in Figure 6.15 to a
three-dimensional crystal is to draw a sphere with radius 1/4. Each reciprocal lattice point that intersects
the surface of the sphere (filled points) is a reflection in reciprocal space (we should note that since the
X-ray i not entirely monochromatic, i.e., there is some spread AA, the surface of the sphere has some
depth, as represented by the dotted surface, which allows more of the lattice points to intersect and thus
to provide for more reflections to come under diffraction conditions). The points included in the volume
of the sphere of reflections can come into diffraction condition as the crystal is rotated.
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Still & Rotation Diffraction

Figure 6.17 Still and rotation dif-
sulting from the imtersection of
reciprocal lattice points with the
Ewald sphere. (a) If the crystal is
held sifl, the chance intersection is
small, resulting in a relatively few
observed reflections. (b) When the
crystal is rotated, the associated lat-
tice is alko rotated and 1O intersact
the Ewald sphere, allowing even
more reflectiong to be observed
{shaded regions).

(2}

(b)

—

N
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6.4 Determining The Crystal Morphology

Observe the spacing and pattern of the reflections on the
diffraction pattern.

Determine the lengths and angles of the unit cell and space
group.

Determine the symmetry or space group in the unit cell.

Define the morphology of the crystal.
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Precession photography

Photographic film, a flat sheets of film

Rotates both the xtal & film in concert to give recorded in an
undistorted manner

Fig. 6.18 Precession photograph
of the tetragonal crystal of lysozyme.
The photograph was recorded along
The pho-
tograph 1S meing the vertical
and horizontal primary axes shown.
An alternative set of primary axes for
indexing is indicated along the diago-
nals. In this latter case, the crystal unit
cell will be defined to be larger than
the set chosen, The distance between

that of 10 vertical laver lines, which

corresponds to a larger unit cell along
the diagonal. [Courtesy of P A.
Karplus.|

n=10

P4,2,2 Axis/ unit cell : Diagonal >Vertical (right) 47



The spacing of reflections on a precession photograph
& the spacing of reflecting planes in a crystal lattice.

1 film D= (2 «r) (20 / 2x) = 2r0
Sin(D/2r) =A /2d
N d = A /2 Sin(D/2r)

Figure 6.15 Relatonship between

spacing of reflections on a precession
'rl photograph and the spacing of refiect

ing planes in a crystal lattice. In pre

cession photography, flat film 1s rolled

along a sphere. The spacing between
two reflections on the photograph
represents the length D of an arc at
the surface of the sphere. Knowing
the distance r from the crystal to the
film, D is related to the diffraction

2 angle 8 by trigonometry and Bragg's
law

Real-Reciprocal space relation ship
d: real space 48
D: reciprocal




Friedel Law-Friedel pairs

The diffraction pattern will show mirror symmetry according to Frideel’s law.
The reflection with Miller indices (h,k,l) should be identical for one at
(-h,-k,-I)

The two halves of the reflection sphere should be symmetry

I(h,k,l) = I(-h,-Kk,-I)

3 principal axes

(h 0 0)=a axis, (0 k 0)= b axis, (0 0 | )=c axis

(h k 0) ab plane, (0 k I) =bc plane, (h 0 I)=ac plane
origin (000)

Systematic absence /observed & unobserved
Ex: P2, 1=2n observed , I=2n+1 unobserved (reciprocal, 1/2 --- 2)
Ex: P2,2,2, only even reflections can be observed, (h,k,l), h=2n, k=2n, 1=2n
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Systematic Absences

Figure 6.16 Systematic absences caused by a 2, axis along the crystallographic
c-axis. A set of atoms A are spaced by a distance ¢ along the vertical axis, A two-
fold screw axis generates a set of symmetry related atoms A’ that are rotated
180 and translated by ¢/2 relative to the atoms A. The resulting scattered beam
appears to come from a unit cell that is half the length of the actual unit cell. The
corresponding diffraction angle will be twice that expected from the unit cell
and, therefore, the reflections along the principal axis 0 0 / will be spaced twice
the distance expected. This appears as the absence of reflections at all odd values

nf I alnno thie avie in tha Ararsceinn nhataaranh
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6.5 Solving Macromolecular Structures By
X-ray Diffraction

More than a single atom in a unit cell (upwards of 10,000 atoms in hemoglobin
crystal).

Deconvolute each reflection into the phase and contributions from
each atom in the molecule.

Atomic position: (X,y,z) coordinates.

Orthogonal Cartesian coordinate system

Fractional cell coordinates 0 to 1
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6.5.1 The Structure Factor

Propagation of Waves
Fig.6.20

in by a distance Lhe an tude of wiave 15 observed 1o b

The propagation of a wave as a
cosine function
E,= Eo cos 2r (vt — X/A\)

E,: Shifted in phase by some fraction

of a wave by the distance r,
of a wave ¢

E= E,+E, =E0 cos 2% (vt — X/A + ¢)

O =141,
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E(x,t) =|E, | cos 2r (vt — x/A) (6.27)
A wave that is shifted in phase by some fraction of wave ¢

E(x,t) =|E,|cos 2 (vt —x/A+ ) (6.28)

Simplify by
Phase angle w =27z (ut—x/A)
Phase angle a=27x¢

E(w) = |E, | coS (o + a) (6.29)

E(w) = [E, | cosw (CoSa +isina) (6.32)
|IE | = |E, | cosw

E = |E|COS(X + ilElSina 6.33)

A wave can be represented vectorially in a system with one axis defined
as the real component cosa and the orthogonal axis as the imaginary
component sina

Argand diagram
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Argand Diagram

Figure 6.21 Argand diagram for a wave vector (E) with real {cos o) and 1y 4
imaginary (sin o) components of the phase angle. In this system the real
component (Re) of a vector is Re(a + ih) = a while the imaginary com-
ponent 18 Imf{n + by = b

E = |E| COSo -+ ||E| sino 6.33)

Express the scattering as the cosine & sine function in their exponential forms

|E| cosa + i|E| sina = |E| e'e (6.36)
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Propagation of Waves
IE| cosa +ilE| sina = |E| ¢

E1l = |EO | @ 2ni(vt—x/h+rl) = |E| e 2mirl
E2 = |EO | e 21 i (vt — X/MA+r2) — |E| e 2nir2

(6.36)

The relative positions of the two atoms in space can be defined as ¢ = |r;-I,|

E2=|E,| e 21 i (r1+ ¢)

The observed amplitude for the scattering from the two atoms is simply

the sum of the two waves

E=E,+E,=E, (1+ e 2%

¢ =0 cycle, E = 2E, , in phase
o =1/2 cycle, E = 0, out of phase

(6.41)
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Atomic scattering factor (f)

If the two atoms are different types of elements, each atom will have a
different number of electron occupying a given volume in space

Atomic scattering factor (f)

f; defines the maximum amplitude of the scattered X-ray if that atom is

placed at the origin of the unit cell ($=0) and is dependent only on the
type of atom that is scatterer.

r=(xa+tyb+zc)) &the scatteringvector (S) &= S - r
f=fe?2rl ST

(ha*, kb*, Ic*) (x; a, y; b, z;c)
(hx +ky +1z) (6.44)
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Structure Factor (F)

For multiple atoms in a molecule of a unit cell, we simply add each of
the atomic scattering vectors to give a summed vector called the

molecular scattering factor “F”

Structure Factor (F)

The amplitude of each scattered beam of observed at specific
values of the Miller indices (hkl).

The sum of the scattering by the separated atoms in the unit cell.
The total scattering from the unit cell.

It depends on the arrangement (structure) of the atoms in the
unit cell.

A function of the scattering in reciprocal space

Written in terms of the electron densities in real space

F(hkl) =F(S)=X fj= X f,el2r!r - S]
=X f[cos(ZnS r) +isin2n(S- )]



fj & F(S)
o =tant {Xfi[cos 2n S1y) ]/ Zf[sin 2rn Sr)) ]}

Im ¢i Im ¢4 Im %

£y

=
|

E_Iq R 2']1’5""*

- | Lo
Re . dp=2ZmSry
Is

Figure 6.22 Adding the atomic scattering components of two atoms (T, and ) to give the
molecular structure factor, F{S). Both [, and [ have their own phase angles defined as § 4 and &g, 0
equil to I8  ry and 28 « rg. The resulting F(S) bas an overall phase angle oy, that mrrcspnnd!.tl}

sum of the individual phases of [; according to Eq. 6.48, I

IF(hkD)| =[S f[cos (2r S - r)]2 +[Sf[sin (2n S - 1)]2

The real & imaginary components of individual f’'s can be summed separately sg
to give the corresponding real & imaginary components of the overall F(S)



Electron density, p(r) = p(X,y,2)
X-ray are scattered by electrons

In quantum mechanics that electrons should be treated as a
probability distribution in space

X-ray scattering is dep. on the electron density ( r), the number of
electrons per unit volume

At any point in the unit cell, r, there will be an electron density, p(r) =
p(x,y,z)

The electron density at any particular point in real space
Written in terms of the scattering vector in reciprocal space

Interpreting structural information from an electron density.
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X-ray are scattered by electrons

, X-ray scattering is dep. on the electron density ( p)

fi=§ § § p(r)e2msrdxdydz (6.49)

molecular structure factors is described by integrating over the volume (V)
of the unit cell

F(S)=§ § §Vp(r)e2risSrdxdydz (650
as a Fourier series

F(S) Is a function of the scattering in reciprocal space is written in terms
of the electron densities in real space
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Electron density ( p) & Structure Factor (F)

X-ray are scattered by electrons, X-ray scattering is dep. on the electron density ( p)

F(S) Is a function of the scattering in reciprocal space is written in terms of the
electron densities in real space

FS) ={Vpexp[2niSr] oV (6.50)
ler Transform

p(N) =1V S V*exp[-2miSr]

(S) (6.51)

p(r) Is a function that gives the electron density at any particular point in real
space in terms of the scattering vector in reciprocal space

p(r) F(S)

Electron density Scattering vector
at any particular point in real space| ™ |in reciprocal space

6




Electron density map ( p)

p(r) =1/V §V*exp[-2piSr] F(S) (6.51)

V* is the volume element in reciprocal space and V is the real space volume of the
unit cell

The electron densities can be calculated from a sum of the F(S) for all Miller
indices (hkl).

o(N=1NV 3 ¥ ¥ F(hkl) exp[-27iSr] =
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Electron density maps

Heme binding
pocket of
Myoglobin

To plot the map as a
set of contours, as in
a geographical map

(a) (b)

Each set of concentric

Figure 6.21 Electron density maps, The electron density calculated from the

contours represent Fourier transform in Eq. 6.37 can be represented by (a) a contour map or as (b)
a set of chicken wires. In this figure. the electron density of the heme bindi

peaks of electron : en wire: gure, the electron density ¢ ¢ heme binding

) pocket of myoglobin 1s shown. In (a), four sections of the contour map are over-

denS|ty lapped to show the electron density at the heme and the surrounding amino acid

residues. An enlarged view of this same set of electron densities are shown in (b)
as surrounding the model of the heme (solid lines).




6.5.2 The Phase Problem

Fourier series measured in the microwave region can be directly into
the NMR spectrum.

Infarred absorption can be detected as a Fourier series that can be
transformed directly into the IR spectrum.

Unfortunately, the devices that we have available to detect short-
wavelength light measure total energy.

Intensity (I)

X-ray the intensity of a light wave is proportional to its amplitude E,
square. Thus we have the amplitude information for each structure
factor, but we lost the phase information of the structure F(S)
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Intensity (1)

X-ray the intensity of a light wave is proportional to its amplitude E,
square. Thus we have the amplitude information for each structure factor,
but we lost the phase information of the structure F(S), but not its

direction

| (hkl) =1(S) = [F(s)| 2
= F(S) FX(S)
F*(S) Is the complex conjugate of F(S)
F*(S) = X fe2msSH
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The Phase Problem
| (hkl) = I(S) = |F(s)| ¢

I(S) =1 (-S)
A reflection at (hkl) has the same intensity as a reflection at (—h-k-I)

Determine F(S) from | (S), we lose critical information fro solving the
structure of the molecule F(S) =| I(s)|

IX|=4, x=12

We know the magnitude of x=2 but we do not know its sign this is
known as the phase problem
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Effect of shifting of the origin

bigure 6.24 Effect of shifting the origin
of the unit cell on the overall phase angle
of two atoms. The left panels represent
two atoms, with atom A at the onigin of the
anit cell and B displaced by r from A (fop
lefi), and the resulting atomic scattering
vectors £y and fy to give a phase angle 85
for atom B and « for the sum of the two
atoms (lower left). When the origin of the
unit cell is shifted, this s equivalent to
shifting the position of the two atoms by
some distance R (upper right). The result
15 that the phases of both atoms and the
overall phase angle « are rotated by an ad-
ditional angle 278 « R (lower right).

of the unit cell

Origin shifting by an additional angles “2n S* R”



When the location of the unit cell Is not known

Figare 6,25 When the location o the ufm—
cell is not known. IT the origin of the unit cell
is unknown, this is equivalent wo shifting all of
the atoms in the unit cell by some unknown
distance R (lefi panel). The result is that all of
the atomic scattering vectors are related by
any angle 278 » R and, consequently, the over-
all phase angle @y, is unknown (right panel).
The corollary is that if & cannot be deter-
mined, then the location of the unit cell onigin
15 unknown.

Shifting all of the atoms in the unit cell by some unknown
distance R and angle “2xn S - R”
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Electron density of dC-dG base pair

Wrong phase Right phase

Fig 6.26 Electron density calculated from the two components of F(h k [). In
(a). the electron density of a DNA crystal was calculated using only |F(h k [)
from the X-ray diffraction data. The map does not fit the model of the DNA
structure, but resembles the pattern expected for the Patterson function. In (b),
the same map was calculated using only the phase information for F(h k I) with
F(h Kk ) set at 1.0 for all reflections. The resulting map very closely resembles
the dC-dG base pair in the structure. This demonstrates the importance of the
phasing information over the magnitude of the structure factor.
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Methods for solving the phase problem

A.
B.

C

D

Direct method
Molecular replacement (MR)

. Isomorphous replacement (MIR)

The Patterson Function

. Multiple-wavelength anomalous dispersion (MAD)
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(A) Direct method

(1) Trying all possible phase combination for each S and simply finding
that combination that best fits the overall data to solve the structure

(2) Using the phase information for each atom inherent in the | data to
retrieve some information concerning the relative positions of atoms in
the crystal. (Patterson Function)

(3) Directly solve the structure of small molecules (100~300 atoms), the

exponential growth in the phase problem as the size of the molecules
Increase.

(B) Molecular replacement

Using a model for a known structure, we can calculate F(S) for all

values of (hkl) for that structure of unknown if both structures are very
similar .

Accomplished by using a series of rotation and translation functions
to fit the model to the electron density

A mutant protein-native protein
Homologous proteins from different
species

71
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Omit map

Fig. 6.27 T]r;.:u-
lated for the overhanging bases of the
D fragment ]
"GCGCG). The electron density
was calculated using only the six
dC-dG base pairs of the duplex re-
gion (underlined) to phase the data.
The residual electron density that is
not accounted for by the six base
pairs is shown to be that of a dG-dT
reverse-wobble base pair (the model
is shown as solid lines, and the hydro-
gen bonds in the base pair as dashed
lines). [Adapted from Mooers, et al.
(1997),J. Mol. Biol. 269, 796-810.]

It was calculated using only the 6 dC-dG base pair



The Patterson Function

Why do we not simply use the observed intensities to construct a
fourier series that will be some function of the atomic position?

Correspond to the vector difference between the atomic positions
A very real indicator of this lost information is found in the
symmetry of a Patterson map

24 space group, removing all the translational element of the
symmetry operators from the original crystal space group.

Centrosymmetric, therefore, there is always a symmetry axis at the
origin

Patterson map corresponds to a distance vector separating two
atoms

Usefully only for locating a small number of atoms within the unit cell
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The Patterson Function

Pxyz) =1/ 2, X, %2, I(S) e 21ST
=1V 3,2, %, F(S) F*S) e2risT

=1V 2h2k2|xp [-27 i(hx + ky + 12) ]

If the transfrom of F(S) is p(I)

the transform F*(S) is p(-r)

Axyz) = 2%, Pil) Px(-M)
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Patterson Maps
2 atoms
Atom A, I'a

Atom B, I's

2°=4 peaks
2 for cross vectors

2 for self vectors
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4 atoms

Atom A, I'n & A’, I'a

Atom B, I's & B’, I's

4°=16 peaks
12 for cross vectors
1:1:2

4 for self vectors

(d)
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Harker plane

Ex: Two-fold screw, 2,, (P 2,)

AX, Y, 2) & A'(x+1/2, -y, -2)
different vector of AA’ is (1/2, 2y, 22)
Patterson peak, (2y, 2z)

The absolute coordinates y and z of atom A can be determined
directly from patterson peak in the Harker plane (x=1/2)
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Patterson map of B-DNA

b

(a)

Fig. 6.29  Patterson map of B-DNA. (a) The Patterson map of an eight base
pair duplex DNA in a tetragonal crystal shows regular densities spaced by 0.34
nm. The duplex must therefore be B-DNA, with the helical axis lving in the plane
and aligned diagonal to the crystallographic axes a and b. (b) The asymmetric
unit of this fragment is one strand of the duplex. The second strand is generated
by two-fold rotation. This automatically places the asymmetric unit on the two-
fold axis of the crystal and allows the structure to be solved entirely from the Pat-
terson map and the symmetry of the crystal lattice.
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Patterson map of B-DNA

8 base pair duplex DNA in tetragonal crystal

Regular densities of spacing of 0.34 A duplex B-DNA

The helical axis lyining the plan and aligned diagonal to the a & b axis
Asymmetric unit one strand of the duplex

The second strand is generated by 2 fold rotation

Allows the structure to be solved entirely fro mthe Patterson map and the

symmetry of the crystal lattice
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(C) Multiple Isomorphous Replacement (MIR)

Heavy atom method

Heavy atoms with high electron densities can strongly perturb the X-ray
diffraction pattern.

Once the positions of these heavy atoms are located within the crystal,
the overall phase of the original molecule can be estimated.

DNA or RNA fragments
Brominated or iodinated nucleotides (5-bromocytosine or 5-iodouridine)

Proteins
Soaking any heavy atoms

TABLE A6.3 CRYSTALLOGRAPHIC DATA AND RESULTS FOR UREASE

Number of

Resolution Unique Final Nonhydrogen o
Crystal of Data Reflections R facton Protein atoms Molecules
Native 2 A a8, 3354 18.5% H002 213
Apoenzyme 2.8 A )().532 IR 49 <044 e
HOHeC . H,CO-Na A 11.027
EuCl \ 12210
Hg.(CH,COO) ) 5 A 2 700
C(HeOOCCH-:), 4 A
(CH,):Pb(CH,COOQO) A )3 48
Se-Met 3.0 A 20.332 80

Data from Jabri et al. (19953)



Quaternary structure of
Urease “afy’”

Figure A6.3 Quaternary structure of urease from the bacterium Klebsiella
aerogenes. The structure of the protein consists of a heterodimer of «, 8, and
y subunits to form a unit with a molecular weight of 83,000 mg/mol. Three of
these units then associate to form a larger trimer.

TABLE 6.4 HEAVY ATOM DERIVATIVES FOR MACROMOLECULAR CRYSTALS

Heavy atom Specificity

Proteins

AgNO, His, Cys (minor)

K,Pd(Br or Cl), Arg, His

Hg acetate His, Cys

p-chloromercuric benzene sulphonate (PCMBS) His

Se Selenomethionine (incorporated during synthesis)
Nucleic Acids

Cu Guanine bases

Pt Guanine bases

I Iodouridine (incorporated during synthesis) 81

Br Bromouridine (incorporated during synthesis)




(C) Multiple Isomorphous Replacement (MIR)

1. Native crystal, Native data set, Fp
2. Isomorphous crystals-heavy atom derivative crystal, FpH
3. Make a difference data set, Fn

4. The FH are used to determine the positions and the phases of
the heavy atoms in the unit cell

5. This process is repeated for at least one additional heavy atom
derivative

6. The phases of at least two heavy atom derivatives are used to
estimate the phase for the native data set to solve the
structure of the macromolecule in the native crystal
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Estimating phases from Multiple Isomorphous Replacement

| Fig 6.30 Estimating phases from multiple isomorphous replacement. The
magnitude of the structure factors for the native protein |Fpl and one heavy atom
derivative |Fpyl each define circles for all possible phases of the reflections. The
structure factor Fy; of the the heavy atom derivative shifts the two circles relative
to each other. The intersection of thetwo circles defines two possibilities { ;

A second heavy atom denvative H' 1s used to distinguish between the two possi-

ble phases for Fy.




R-factor: a criterion of a good fit of the molecule to the data

“Fig:6.3I"7 Effect of refinement on structure. The guanine nucleotide of a
A ragment is shown with its electron density map prior to refinement and
after refinement. Prior to refinement, the R factor is 31%. The structure is refined
against the data to an R factor of 20%, which is the criterion of a good fit of the
model to the data.
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Structure Refinement

Initial model fits the measured diffraction data
Compare the observed & calculated structure factor
70% for a random fit, 0% for an ideal fit

For macromolecules, 20% indicates a good fit.

Zl | |:(hkl) |' | |:calcl |

2| F iy |
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Other Methods for Phasing X-ray Diffraction Data

~Anomalous dispersion

Atoms with Iectron densities not only scatter X-ray, they also
absorb X-ray$;and it is near its absorption

Breakdown the Friedel’s law (f, = f_), the difference in intensities
between Friedel pairs can be used to determine the phase of heavy atoms

f,=f +f +1f]~
F=f -1 -1f"
f, #1
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Anomalous dispersion effects
on the atomic scattering factor

i -..'.r.l.' T

f, =

Fig.6.32 Anomalous dispersion
effects on the atomic scattering fac-
tor. The atomic scattering factors
from atoms that absorb X-rays are
perturbed by factors f, and f_. which
affect F(h k) and F(—h —k —I[). The
correction factors are the sums of the
real components (f,." and f_") and
imaginary components (if,” and if ").
The real components are symmelric

about the real axis F,, while the imag-

inary component is symmetric about
the imaginary axis iF,,.
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MAD experiment by Br at 1.6 A

1o

| -
-l
-

i
LA

=3

Figure 6,33 Experimental electron density map phased by a multiple-wavelength anomalous dispersio
(MAD) experiment at 0.16 nm resolution. Crystals of the sequence d(GGbrSCGCC) was phased usi
the S-bromocylosine in the sequence and wavelengths of (092052 nm (absorption of bromine ), (IR
nm (inflection point for absorption), and 0.090836 nm (a wavelength that is remote from the absorpl
edge). The experimental electron density is shown for one of the 24 base pairs in the asymmetric uni
the crystal.

Absorption of Br at 0.092052 nm
Inflection for absorption of Br at 0.090836 nm

Remote from absorption of Br at 0.092065 nm



Multiple-wavelength anomalous dispersion (MAD)

1) The closer the wavelength of this radiation is to the
absorption edge of the scattering atom, the stronger the
anomalous dispersion.

2) Two different wavelengths result in 2 different values of i {7,
which in turn gives us 2 different pieces of phase information
from the heavy atom

3) This is the same as having 2 independent heavy atom
derivatives

4) The phase information is not as strong as with 2 derivatives
with truly different atomic coordinates
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Structure model and diffraction data

The best resolution 2d sind = nA  (A=1.54A , for CuKa radiation)
Sin6=1,6=90°20=180° d=0.077 nm,

The highest resolution cannot be collected

20 ~110°, sin6 =0.82, d=0.094 nm,

The highest resolution is 0.94 A

Four parameters are need (X, y, z) & B temperature factor
B factor (temperature factor):
The thermal motion of the atom
Higher B, electron occupy a larger volume
|sotropic/anisotropic
<60

Partial occupancy (0-1)
Reflects the overall disorder of the atom. 90



6.5.4 resolution in X-diffraction

TABLE 6.5 X-RAY RADIATION AND RESOLUTION

Radiation Cuk MoK,
A (.15418 nm 0.07107 nm
(i) in = A2 0.07709 nm 0.03554 nm

[From G. H. Stout and L. H. Jensen (1989), X-Ray Struc-
ture Determination, a Practical Guide, 2d ed., John Wiley
& Sons, New York. p. 37.]
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How much data is required

N = (4/3) & V / 0

Ex: 350 atoms, crystal volume of 6 nm3, protein A, d = 0.26nm (2.6A) or 26
= 340

N=1429 refs required
2dsin® =nA , 6 =17°, 20 = 34°

Ex: xtal B, crystal volume=25nm3, at 0.1nm (1A) resolution,
104,720 refs are required for P1, the lowest symmetry,
unique refs=52,360 are required [unique refs, F(hkl)=F(-h,-k,-1)]

For higher symmetry, P212121

Unique refs: 52,360/4=13,090 are required
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6.6 Fiber Diffraction
bemdian Fiber diffraction of B-DN.

1000294 nm 1)
8 (0.0235 nm 1)

T— 6 (0.0176 nm—1)

— -lHI.HHHnm 1)

— 2 (0.0059 nm 1)

‘ I— 0 (equator)

— 1/ Figure 1.22 Spiral staircase and helix. A sp
i p discrete residues of a helix. Each step is ana
biopolymer helix, and can be described by

P -c h pitch (P), repeat (¢), and twist (0).

b o 1/p=1/0.0294nm-1
Helical X p= 34nm:340A
P=ch=10h, h=3.4A

Fig.6.34

Figure 6.29 The fit
graph of the lithium rorm or a WNA fiber (recored at 66% humidity) shows the

helical X expected for helical structures and 10 layer lines spaced according 1o

n/P in nm * between the origin and the exact repeat of the pattern. This indicates 93
that the fiber is B-DNA. [Courtesy of R. Langridge].

n photograph of B-DNA. The diffraction photo-



6.6.1 The Fiber Unit Cell

The packing of the symmetric unit (helices) in the fiber of a biopolymeris
essentially the packing of infinitely long cylinders

A series of stacked repeating cylinders not a box

The unit cell in cylindrical coordinates

i ¥ Figu6i:3630 Cylindrical unit c

POl SPrace AN 1N Fe i':'lllu-'i SPACC
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6.6.2 Fiber Diffraction of Continuous Helices

ch

o

Fig. 6.36 Continuous and discon-
tinuous helices, A continuous helix is
a line wrapped around the surface of
a cylinder. The intersection of this line
with a set of lattice lines defines the
positions of the residues of a discon-
tinuous helix.
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i Fig. 6.37 Bessel functions, J,,.
[}.4 - Bessel functions are shifted to higher

values of x and are reduced in inten-
0.2 |- sity J,” as the order of the function n

| i 40 is increased. The intensity /(S) along
0246 81012141618 20 the layer lines in a fiber diffraction

x =2mryR pattern is proportional to J,*.
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