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Processing of the Notch Ligand
Delta by the Metalloprotease

Kuzbanian
Huilin Qi,*† Matthew D. Rand,*† Xiaohui Wu, Nenad Sestan,

Weiyi Wang, Pasko Rakic, Tian Xu, Spyros Artavanis-Tsakonas†‡

Signaling by the Notch surface receptor controls cell fate determination in a
broad spectrum of tissues. This signaling is triggered by the interaction of the
Notch protein with what, so far, have been thought to be transmembrane
ligands expressed on adjacent cells. Here biochemical and genetic analyses
show that the ligand Delta is cleaved on the surface, releasing an extracellular
fragment capable of binding to Notch and acting as an agonist of Notch activity.
The ADAM disintegrin metalloprotease Kuzbanian is required for this processing
event. These observations raise the possibility that Notch signaling in vivo is
modulated by soluble forms of the Notch ligands.

The Notch (N) signaling pathway defines an
evolutionarily conserved cell interaction mech-
anism that controls cell fate by modulating the
cell’s response to developmental signals (1, 2).
The N receptor is cleaved in the trans-Golgi
network as it traffics toward the plasma mem-
brane and eventually forms a ligand-competent
heterodimeric molecule (3). Both known li-
gands, Delta (Dl) and Serrate (Ser), are thought
to act as transmembrane proteins that interact
via their extracellular domains with N receptors
that are expressed on adjacent cells (2, 4). Giv-
en the similar phenotypes produced by loss of
Notch signaling and loss-of-function mutations
in the kuzbanian (kuz) gene [a gene encoding a
putative member of the ADAM family of met-
alloproteases (5)], it has been suggested that

Kuz may be involved in the cleavage of N (6).
This hypothesis is not corroborated by recent
biochemical studies, indicating that the func-
tionally crucial cleavage of N in the trans-Golgi
network is catalyzed by a furinlike convertase
(7).

A genetic screen to identify modifiers of the
phenotypes associated with the constitutive ex-
pression of a dominant negative transgene of
kuz (kuzDN) in developing imaginal discs iden-
tified Delta as an interacting gene (8). Flies
expressing this dominant negative kuz con-
struct, despite carrying a wild-type complement
of kuz, became semi-lethal when heterozygous
for a loss-of-function Delta mutation (8). In
contrast, Delta duplications rescued the pheno-
types associated with kuzDN (Fig. 1). The
kuzDN flies display extra vein material (espe-
cially deltas at the ends of the longitudinal
veins), wing notching (observed with a low
penetrance), extra bristles on the notum, and
have small rough eyes (Fig. 1, A and E) (6).
When kuzDN flies carried three, as opposed to
the normal two, copies of wild-type Notch, the
bristle and eye phenotypes were not affected
(8), nor were the vein deltas altered (Fig. 1D).
However, the kuzDN phenotypes were effec-
tively suppressed by Delta duplications (Fig. 1,
B and F), indicating that a higher copy number
of Dl molecules is capable of overriding the
effect of the kuzDN construct.

The interaction between Delta and kuz was
further explored through their respective pro-
tein products. Dl antigen was expressed in a
stably transfected S2 cell line and was exam-
ined with an extracellular domain–specific an-
tibody (9) (Fig. 2A). A fragment migrating
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faster than Dl was observed exclusively in the
medium. The size of this fragment, about 67 kD
(Fig. 2C), is consistent with the extracellular
domain of Dl, estimated to be 65 kD (Fig. 2D).
This fragment was subsequently affinity-puri-
fied from the culture medium, and the NH2-
terminal sequence was determined (Fig. 2E).
The sequence revealed a putative propeptide
processing site that is conserved in all the Delta
homologs (Fig. 2E). Thus, Dl may be
cleaved at the cell surface to release a
soluble fragment, designated as DlEC (Del-
ta extracellular domain). Protein immuno-
blot analysis of Drosophila embryos re-
vealed the existence of both Dl and a frag-
ment with the same mobility as DlEC,
which implies that the same Dl-derived
product is present in vivo (Fig. 2B). Be-

tween Dl and DlEC, additional potentially
transient proteolytic products were detect-
able (Figs. 2B and 3D; kuz1/–).

The possibility that the generation of DlEC

can be influenced by Kuz was examined by
cotransfection experiments in S2 cells that
express wild-type Kuz endogenously (6). Co-
transfection of Dl with Kuz showed an in-
crease in the DlEC fragment as compared to
Dl transfection alone (Fig. 3A). The corre-
sponding decrease in Dl suggests that Dl is
the precursor of the DlEC product. These data
also indicate that transfection of Kuz acts
additively to the endogenous Kuz in the S2
cells. Supporting this hypothesis, cotransfec-
tion with KuzDN had an inhibitory effect on
DlEC production (Fig. 3A). Under identical
experimental conditions, cotransfection of

Kuz or KuzDN had no effect on the pro-
teolytic processing of N (Fig. 3B). Thus,
Kuz functions in the processing of Dl but
not of N. In agreement with this conclu-
sion, DlEC production was markedly inhib-
ited by the metalloprotease inhibitors
EDTA and 1,10-phenanthroline (Fig. 3C),
whereas no effect was observed with serine
protease inhibitors (phenylmethylsulfonyl
fluoride and aprotinin), cysteine protease
inhibitor (leupeptin), or aspartyl protease
inhibitor (pepstatin) (10).

The role of Kuz in generating this product in
vivo was examined in kuz mutants. kuz mater-
nal null embryos with either one (kuz1/–) or no
(kuz–/–) zygotic copies of kuz were created by
crossing female flies carrying kuz germline
clones (5). The kuz–/– embryos were distin-
guished from kuz1/– embryos by the absence of
malpighian tubules and the lack of movement
in the kuz–/– embryos. Extracts prepared from a
collection of nine of each type of embryo

A B

C D

E F

Fig. 1. Modifiers of the
kuz phenotype. A ge-
netic modifier screen
was carried out to iden-
tify genes that interact
with kuz. In the screen,
a strain was used that
constitutively express-
es a kuzDN construct
(18) in developing imag-
inal discs. Adult mu-
tant phenotypes (19)
of these flies included
extra wing vein ele-
ments, mostly notably
deltas at the ends of
the longitudinal veins
[arrowheads in (A)], small and rough eyes, and
extra bristles on the notum [arrows in (E)].
Flies that carried three copies of the Delta gene
with the kuzDN background (B and F) showed
an almost complete suppression of the kuzDN
phenotypes. Three copies of Notch, introduced
by a transgene (20), yielded an essentially
normal phenotype (C) but showed negligible
suppression of the kuzDN phenotype in kuzDN
flies (D).

Fig. 2. A soluble Delta fragment is released con-
stitutively in Delta-S2 cell culture and in vivo. (A)
Expression of Dl antigen in stably transfected S2
cells (17) is detected by SDS-PAGE and protein
immunoblotting with monoclonal antibody 9B
(9) in nonreduced cell extracts (c) and culture
medium (m). A product consistent with Dl is
detected in the cell extract. A product of greater
mobility is seen in the medium that is consistent
in size with the extracellular domain of Dl and is
referred to as DlEC. (B) Bands of the same mobility
are seen in extracts of 16-hour wild-type Dro-
sophila embryos. The number of embryos loaded
on the gel is shown above the lanes. (C) Affinity-
purified DlEC (21) migrates with a molecular mass
of about 62 and 67 kD in nonreducing (lane 1)
and reducing (lane 2) conditions, respectively, on
Coomassie blue–stained SDS-PAGE. (D) A schematic of Drosophila Dl illustrates the conserved Delta
Serrate, Lag-2 domain (DSL), the epidermal growth factor (EGF)–like repeats, and the transmembrane
domain (TM). Amino acid numbering of the NH2-terminus, the beginning of the TM domain, and the
COOH-terminus are shown. (E) Thirteen cycles of NH2-terminal amino acid sequence analysis of DlEC

(DIEC) are shown with alignment to the sequences of Drosophila (dDl), Xenopus (xDl), and human (hDl)
Delta proteins. The arrow indicates the conserved serine in the position of the NH2-terminus of DlEC and
the putative signal peptide processing site for Dl.

Fig. 3. Kuz plays a direct role in Delta processing
in vitro and in vivo. (A) Dl and DlEC were visual-
ized by protein immunoblotting with the 9B an-
tibody in the cell pellet (c) and the medium (m) in
S2 cells transiently transfected with Dl alone
[pMTDl (22) lanes 1 and 2], cotransfected with
Kuz (6, 23) (lanes 3 and 4) or cotransfected with
Kuz DN (6, 23) (lanes 5 and 6). (B) Cotransfection
of Kuz and KuzDN with N [pMTNMg (22)], done
under identical experimental conditions as for Dl
and protein immunoblotted with an intracellular
domain–specific antibody (22), yielded a negligi-
ble effect on the processing of N as seen by the
invariant levels of NTM, the constitutively pro-
cessed form of N (3). (C) The metalloprotease
inhibitors EDTA and 1,10-phenanthroline (1,10-
ph) inhibited the endogenous S2 cell proteolytic
activity that produced DlEC. The left panel shows
the accumulation of DlEC at various time points
up to 60 min in the medium of S2 cells stably
expressing Dl. The right panel shows the accumu-
lation of DlEC at 60 minutes in the presence of
EDTA and 1,10-phenanthroline. Both of these re-
agents, which are well-documented metallopro-
tease inhibitors, inhibited accumulation of DlEC in
the medium. (D) Dl processing was inhibited in
kuz–/– embryos. Nine kuz1/– and kuz–/– embryos
were identified by morphology, and the extracts
were analyzed by SDS-PAGE and protein immu-
noblotting with 9B. DlEC was absent in kuz–/–

embryos and demonstrated a higher level of Dl as
compared to kuz1/– embryos.
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showed the distinct absence of DlEC and higher
levels of Dl in the kuz–/– embryos as compared
to kuz1/– embryos (Fig. 3D). Reprobing of the
same membrane with antibody to N showed no
difference in the processing of N in the kuz–/–

and kuz1/– embryos (10). Furthermore, analysis
of 14 randomly selected individual embryos
showed 8 embryos with high levels of Dl (10),
analogous to the kuz–/– embryos (Fig. 3D) and
consistent with the predicted numerical out-
come of the cross. Together, these observations
indicate that Kuz mediates the proteolytic pro-
cessing of Dl in vivo.

Although kuz mutants have multiple defects,
indicating an involvement in several different
processes (5), their phenotypes partially overlap
with that of Delta mutants. Inactivation of kuz
during embryogenesis causes a more extensive

neurogenic phenotype than do Delta mutations;
nevertheless, it is clear that in the ventrolateral
region the neural hypertrophy in the two muta-
tions is identical. Similarly, due to the pleitropy
of kuz and Delta the phenotypes associated with
mosaic clones are complex. Yet they are also
partially overlapping, compatible with the hy-
pothesis that the processing of the Dl protein is
mediated by Kuz (5, 6, 11).

DlEC bound specifically to N-expressing
S2 cells (Fig. 4A), suggesting that a DlEC-N
complex forms on these cells. These results
were extended by analysis of the ability of
DlEC to compete for Dl binding to N in a cell
aggregation assay (Fig. 4B). Preincubation of
the N cells with DlEC concentrate (16) result-
ed in a reduction in the initial rate of aggre-
gation with Dl cells. The competitive effect

of DlEC was sensitive to the concentration
added and to the time of preincubation with
the N cells (10). Furthermore, preincubation
of the Dl cells with DlEC had no effect on
subsequent aggregation with N cells, indicat-
ing that DlEC specifically binds to N in a
competitive manner with respect to Dl.

The biological activity of DlEC was exam-
ined in a cell culture assay. Neurons develop
axodendritic processes (such as neurites) in pri-
mary cultures of mouse embryonic cerebrum
(Fig. 4C). Sestan et al. (12) have demonstrated
that ligand-dependent Notch activation in cor-
tical neurons, which express endogenous Notch
receptors, causes morphological changes as
well as retraction of neurites. The same effects
were observed when the neurons were cultured
in the presence of enriched DlEC-containing
medium or purified DlEC (Fig. 4C). Thus, DlEC

has biological activity and apparently acts as an
agonist of Notch activity.

Genetic and biochemical evidence dem-
onstrate that proteolytic processing of Dl pro-
duces the soluble DlEC fragment, which is
biologically active with an apparent agonistic
function in the Notch pathway. Previous
studies involving in vivo expression of arti-
ficially truncated Notch ligands, in Drosoph-
ila and other systems, have demonstrated
both agonistic and antagonistic activities (13,
14). A soluble form of Delta (DlS) can act as
an antagonist in the developing Drosophila
eye (13). However, DlEC is not identical to
DlS, and therefore it is plausible that the two
molecules may be functionally different.

Although Kuz does not appear to be respon-
sible for the constitutive cleavage of N, the
possibility that Kuz can cleave N at alternative
sites remains. In this regard, it has been claimed
that KuzDN is able to inhibit transactivation of
a target gene of the N pathway induced by
ligand binding to the receptor (7). However, it
is possible that this effect does not reflect N
cleavage but rather the cleavage of Dl to pro-
duce an active ligand. Kleug et al. (15) have
recently reported the processing of Dl during
normal embryogenesis, demonstrating the exis-
tence of Delta fragments, one of which is con-
sistent with DlEC. The intermediate forms de-
tected in embryos 16 to 20 hours old (Figs. 2B
and 3D; kuz1/–) were not present in kuz mutants
(Fig. 3D; kuz–/–), raising the possibility that the
generation of these products may also be me-
diated by Kuz. The importance of additional
cleavages in Dl, the mode of activity of full-
length Dl, and whether the second ligand Ser is
also processed are critical questions to resolve.
It is now apparent that future analyses of Delta
in Notch signaling events must consider its
potential as a diffusable ligand.
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Plant Paralog to Viral
Movement Protein That

Potentiates Transport of mRNA
into the Phloem
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CmPP16 from Cucurbita maxima was cloned and the protein was shown to
possess properties similar to those of viral movement proteins. CmPP16 mes-
senger RNA (mRNA) is present in phloem tissue, whereas protein appears
confined to sieve elements (SE). Microinjection and grafting studies revealed
that CmPP16 moves from cell to cell, mediates the transport of sense and
antisense RNA, and moves together with its mRNA into the SE of scion tissue.
CmPP16 possesses the characteristics that are likely required to mediate RNA
delivery into the long-distance translocation stream. Thus, RNA may move
within the phloem as a component of a plant information superhighway.

Phloem represents an advanced long-distance
transport system that delivers nutrients and
hormones to plant tissues and organs. Mature
SE are enucleate (1) and thus must rely on
their associated companion cells (CC) for
maintenance of their physiological functions

(2). To this end, SE are connected to CC
through specialized, branched plasmodesma-
ta (3) that mediate delivery of proteins into
the long-distance translocation stream (4, 5).

The observation that specific mRNA mol-
ecules, such as sucrose transporter 1 (SUT1)
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