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ABSTRACT  

Previous research has shown that many luminance normalization mechanisms are engaged when viewing scenes with 
high dynamic range (HDR) luminance. In one such phenomenon, areas of similar luminance contextually facilitate the 
perception of ambiguous textures.  Using inspiration from biological circuitry, we developed a recurrent spiking neural 
network that reproduces experimental results of contextual facilitation in HDR images. The network uses correlations 
between luminance and texture to correctly classify and segment ambiguous textures in images. While many deep neural 
networks can successfully perform many types of image analysis, they have limited ability to process images under 
naturalistic HDR illumination, requiring millions of neurons and power hungry GPUs. It is an open question if a recurrent 
spiking neural network can minimize the number of neurons required to perform HDR image segmentation based on 
texture. To that end, we designed a biologically inspired proof-of-concept recurrent SNN that can perform such a task. 
The network is implemented using leaky integrate-and-fire neurons, with CuBa synapses. We use the Nengo LOIHI API 
to simulate the network, so it can be run on Intel’s LOIHI neuromorphic hardware. The network uses a highly recurrent 
structure to both group image elements based on luminance and texture, and to seamlessly combine these modalities to 
correctly segment ambiguous textures. Furthermore, we can continuously modulate how much luminance or texture 
contribute to the segmentation. We surmise that further development of this network will improve the resilience of optical 
flow computations under environments with complex naturalistic illumination. 
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1. INTRODUCTION  

Navigating a visual environment requires making sense of areas of high illumination and dark shadows simultaneously 
1, 2. These so-called high dynamic range (HDR) luminance visual scenes often pose a challenge to standard dynamic range 
(SDR, 8-bit) cameras, as their sensors are limited to scenes in which the brightest and darkest pixels differ by less than 
255-to-1 luminance ratio. For HDR scenes, SDR sensors either capture limited light and miss darker parts of the scene, or 
they become oversaturated at brighter regions 3. A common practice to obtain HDR images from SDR sensors is to digitally 
blend the sensor images across multiple exposures 3-5. However, this requires offline processing 3 or large power hungry 
convolutional neural networks 4, 5, and it is insufficient to address the inverse problem of recovering 3D shape by estimating 
surface reflectance and slant under uneven illumination. In contrast, biology solves this problem with fewer resources and 
limited time, using divisive normalization and other processes for contrast gain control, to compensate for uneven HDR 
illumination and for gaze-dependent contrast changes6 in structurally and photically dynamic environments 2. Moreover, 
the visual system makes use of contextual information, via lateral, recurrent, and feedback connections in early visual 
brain areas, to improve its ability to correctly adjust contrast based on surrounding context 7-12. Controlling contrast in 
HDR environments is key for downstream computations such as optical flow, a critical feature of dynamic vision used in 
both biology and engineering. This is because uncontrolled contrast can result in errors in overestimating the speed of the 
flow, as extreme changes in contrast will lead the algorithm to believe objects are moving faster than reality. Thus, contrast 
gain control in HDR (‘tonemapping’) is a key preprocessing step in real-time video processing. 

Previous research in humans and animals has shown that the luminance properties of nearby contours matters for 
estimating orientation of a target surface, and that the spatial arrangement of nearby contours (‘articulation’) affects the 
perceived lightness of a central patch 13-15. It is thought that the brain performs luminance-feature untangling by inferring  
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that nearby surfaces likely receive similar illumination, then computing the shape feature of a target surface by grouping 
related elements 1. It is known that contrast is strongly modulated by the luminance of surrounding elements under SDR 
and HDR conditions 16-18. We recently extended this understanding of luminance-edge interactions to the HDR domain, 
by discovering a psychophysical phenomenon whereby the perceived orientation of a central luminance patch is biased by 
nearby co-oriented patches with similar luminance, consistent with similarity-based contextual facilitation 1, 19. The effect 
was strongest for HDR images, and it depended on the specific interaction between patch luminance and flanker 
orientation, such that the effect was abolished if flankers had dissimilar luminance. The contextual specificity of these 
luminance-orientation interactions suggested that they could inform the construction of a computational model for context-
dependent grouping for contrast gain control. We speculated that these behavioral phenomena could be useful signatures 
of the brain’s computational processes, reflecting statistical regularities in visual scenes such as the tendency of nearby 
surfaces to receive similar illumination, which the brain then harnesses for contrast gain control for downstream processes 
such as optical flow and inferring shape from shading.  

To build a neural network model that reproduces the empirical observations, we first revisit several findings from 
previous cortical research. The fact that these contextual effects are highly orientation-sensitive suggests that their 
computational processes begin in the primary visual cortex (V1), the first brain area with orientation-selective neurons. 
V1 also has tonic and phasic luminance-sensitive neurons (responding to luminance level and to relative luminance 
change) 20, 21, and it is thought that these luminance-sensitive and orientation-selective neurons interact to encode a higher-
order percept of surface texture and possibly surface brightness and reflectance 8, 22, 23. Besides this evidence of functional 
circuitry between luminance and orientation neurons, there is also physiological and anatomical evidence of strongly 
clustered horizontal fiber networks in V1 that could support grouping by common features, e.g. by co-orientation 24-26 or 
by similarity in luminance or color  27-29, but such specificity may not extend to long-range horizontal inhibitory 
connections 30. 

Grouping of like stimuli is a consequence of the cortical microstructure 31 and inhibitory interneurons 31-33, including 
lateral 12, 34, 35, feedback inhibition 36 , 37, and mutual inhibition 38. Here the mutual inhibition of neurons allows cortical 
regions to segment similar visual information into different distinct sets of neurons with distinct neural activity 32, 38, 39. 
More specifically, this is accomplished because inhibitory neurons ‘decide’ to what group a particular visual precept 
belongs 12, 33, 35, 38-40. Moreover, once the visual precepts have been segmented into groups, they stay in these groups. This 
is because the segmentation process is robust to perturbation (like shifting luminance in high contrast situations), as the 
visual precepts are ”stuck” in their basin of attraction 31, 32, 38, 39. 

Figure 1: The need for HDR normalization.  
In a high dynamic range (HDR) environment, luminance can vary over 10,000 fold (10k:1) from light areas to dark areas. Because of 
the low (256:1) dynamic range of standard 8-bit photos, the tunnel is either too dark at low exposure, or too saturated at high exposure. 
The goal of HDR normalization is to balance the luminance contrast across the image so that more of the image is visible. Our 
neuromorphic network is a step towards developing brain-like computations for HDR normalization for autonomous navigation. 
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With this understanding of the basic computational structure for edge-luminance interactions, we sought to develop a 
model to explain our recent findings of contextual modulation under HDR luminance. Here, we construct a spiking neural 
network (SNN)  to reproduce the experimental results of contextual facilitation from our recent study 1. Our SNN makes 
use of LOIHI neuromorphic hardware emulated with Nengo 41, 42. Specifically, we show that our SNN can reproduce the 
observed facilitation under HDR conditions, and that the facilitation disappears when the HDR condition disappears. We 
make use of three neural mechanisms: all-to-all excitation to boost weak ambiguous signals, global inhibition to implement 
divisive normalization, and local inhibitory neurons to classify textures and luminances. We show that this network 
architecture is able to reproduce the human experimental results. 

 

 

2. METHODS 

 

2.1 Presented Stimuli 

To understand the brain circuits underlying resilient surface perception under HDR luminance, Hung et al. 1 presented 
human subjects with a difficult discrimination task: a full-field bright (400 cd/m2) adapting blank stimulus was presented, 
followed by a collection of 25 Gabor filters with different luminance pedestals and orientations (Figure 2A and 2B). The 

 

 

Figure 2. Experimental protocol used to test the circuit  
A grid of 25 Gabor filters arranged either at a 45° angle, or 135°, with randomized luminance pedestals B: The central patch has a 
contrast mixture of two Gabors at 45° and 135°, and is much weaker than surrounding Gabors (average 2% contrast at center, vs. 100% 
contrast for surrounding Gabors). The central patch’s Gabor contrast mixture was tested at regular intervals from 40%/60% to 60%/40% 
A/B, where A is 45° and B is 135°.  C: There is a preceding 3 s bright (maximum luminance) background before the Gabor stimuli are 
presented for 3 s. The activity of the units is sampled between 4 and 5 s. 
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luminance pedestals of the 25 Gabor patches ranged from 0.4 cd/m2 to 40 cd/m2, and each Gabor’s pixels ranged from 
0.3× to 3.3× its patch’s pedestal luminance, resulting in a 1111-to-1 dynamic range (3333-to-1 including the adapting 
blank stimulus). The subject’s task was to correctly guess the central patch’s Gabor orientation. The central patch had a 
contrast mixture of two Gabors (45° and 135°) presented simultaneously, and depending on the condition the contrast 
mixture was either 40%/60% or 60%/40% of the total amplitude for the 45°/135° Gabors, respectively. The total amplitude 
of the central Gabor was set at 34% that of flanker Gabors, resulting in a central Gabor peak-to-peak amplitude of 1.25% 
that of the adapting background.  

 The central target’s perceived orientation depended on how the brain grouped that target with the background texture 
and luminance patterns, e.g. is the perception biased by the orientation of nearby contours with similar luminance to the 
target, or biased by the contours with the brightest luminance? The addition of the bright adapting blank stimulus 
effectively created a situation where determining the central Gabor filter’s orientation was difficult, forcing the brain to 
reveal its mechanisms for contextual grouping for contrast gain control and tonemapping (Figure 2C). 

 

2.2 Simulation Environment  

In this paper, we use Nengo, the Python based scripting language for neural networks 41. Nengo is able to emulate the 
LOIHI chip spiking neural network (SNN) developed by Intel 41, 42 . LOIHI is a neuromorphic SNN containing LIF neurons 
connected by Current Based (CuBa) synapses 42. The LIF neuron is a differential equation that captures the essence of a 
biological neuron’s action potential and its synaptic dynamics. They can be described by a system of differential equations:  

𝐶௠
ௗ௏೔

ௗ௧
= 𝑔௅(𝑉௜ − 𝐸௅) + 𝑢௜     when 𝑉௜ > 𝑉௧௛ then 𝑉௜ → 𝑉௥௘௦௧ 

𝑢௜(𝑡) = 𝑔௜௝  𝛼(𝑡) ∗ ෍

௝

𝛿௝(𝑡 − 𝑡௦௣௜௞௘)  

where V is the membrane voltage, 𝐶௠ is the membrane capacitance, 𝑔௅ is the leak conductance, 𝐸௅ is the leak current, 𝑉௧௛ 
is the voltage threshold, and 𝑉௥௘௦௧   is the reset voltage. Here 𝑢௜ (𝑡) is the synaptic current. Whenever 𝑉 exceeds the voltage 
threshold 𝑉௧௛, the neuron fires a spike. This is used to calculate the synaptic current in the postsynaptic neuron. There are 
several variants of the mathematical form of the synaptic current. Here we use the one that is implemented in LOIHI: the 
delta pulse given by the equation 𝑢௜(𝑡) = 𝑔௜௝  𝛼(𝑡) ∗ ∑௝ 𝛿௝(𝑡 − 𝑡௦௣௜௞௘) . Here the current is a convolution with exponential 

decay term  𝛼(𝑡) =  
௘

೟
ഓ

ఛ
 and the sum of all the presynaptic spikes ∑௝ 𝛿௝(𝑡 − 𝑡௦௣௜௞௘) . The synapse weight 𝑔௜௝ is excitatory 

when 𝑔௜௝ > 0, and it is inhibitory otherwise.  

Nengo provides an easy environment for both constraining the parameters and simulation of the network. We use the 
standard parameters for LOIHI which are default settings for Nengo 41, 42. 

 

 

2.3 Network Architecture 

We construct the network using the aforementioned LIF model as implemented by LOIHI. Our goal is to take 
advantage of recurrent neural network structure to reproduce the experimental results in our previous study 1. Specifically, 
we split up the visual field into 25 patches as a 5×5 array. Within each patch we process two types of sensory information, 
average luminance which we will call the luminance pedestal, and texture, which we will refer to as Gabor orientation. 

Here Gabor orientation is computed as a convolution of an entire patch with a Gabor filter oriented at 45° or 135°. 
Here the wavelength is λ = 20 pixels. The standard deviation of the filter was set at σ = 20.   Likewise, the luminance 
pedestal is calculated as the average luminance over the entire patch.  We segregate dark and light luminance pedestals  
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with ON/OFF neurons that have sigmoidal activation curves. For ON neurons the sigmoid increases with luminance, and 
for OFF neurons the sigmoid decreases with luminance. The threshold and steepness of the sigmoid is the same for all 
patch. The steepness is modulated by the variance 𝑥௩௔௥  of all patches (if variance is zero it is set at a minimum 𝑥௠௜௡= 4 
cd), and the threshold 𝑥௔௩௚  is modulated by the average luminance of all patches.  𝐼௚௔௕௢௥ = 𝑃௣௔௧௖௛(𝑥, 𝑦) ∗

[cos(
ଶగ

ఒ
(𝑥 ± 𝑦)) 𝑒

ೣమశ೤మ

మ഑మ ] =  

𝐼௢௙௙ =
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Each aspect of the visual information is processed by its own similar subcircuit (see Figure 3A). We can classify 
stimuli across the visual field into distinct orientation groups (45° or 135°). For each of the 25 Gabor patches, there is a 
separate 3-neuron group. Within each group, two excitatory neurons connect to a central inhibitory neuron, which in turn 
inhibits the excitatory neurons. This creates a decision network, where only one of the excitatory neurons can be active at 

a time. Here each excitatory neuron has a Gabor filter as its receptive field. Therefore, one excitatory neuron represents a 
simple cell oriented for 45° stimuli, whilst the other excitatory neuron represents a different simple cell whose receptive 
field is oriented for 135° stimuli. In order to take into account the weaker central Gabor filter’s orientation, we group the 
25 excitatory neurons that are selective for a specific orientation. Within this group all excitatory neurons are connected 
to all other excitatory neurons in two all-to-all networks, which can boost weak inputs of similar stimuli. We also have a 
global inhibitory neuron to control the firing rate of the excitatory populations.  

We can use a copy of the exact same circuit for the luminance pedestals. However, here the receptive fields are the 
ON and OFF neurons for luminance pedestals. The information similarly segregates the patchess into dark and bright 
patches. While the first layer captures the boosting of weak stimuli and HDR via gain normalization, they do not capture 
the effect of contextual modulation of similar luminance pedestals. Specifically, the behavioral experiment had a 
counterbalanced design in which luminance-orientation relationships of the flanking Gabor patches were defined 
according to two different groups of luminance pedestals and used this information to modulate the perceived orientation 
of the central Gabor patch. This requires integrating these two different modalities (luminance and orientation).  

 

 

Figure 3. Neuromorphic circuit for luminance-edge integration and normalization 
A: The first layer of the neural circuit, consisting of two copies of the circuit; one for pedestal luminance, and the other for Gabor filter 
orientation. Each circuit has two distinct groups of all-to-all excitatory neurons (red) that represent one location on the grid. Each grid 
location has an inhibitory neuron (blue) that only allows one stimulus group to be active at a given time. There is a global inhibitory 
neuron responsible for maintaining a reasonable firing rate in the all-to-all network. B: The second layer of the network combines the 
information from the first layer and has a very similar network structure to that in the first layer. However, each excitatory neuron is 
replaced with a 4-neuron circuit that has two excitatory and two inhibitory neurons. These neurons help integrate the two different 
modalities together. Two excitatory control neurons (cyan and yellow) excite one of the inhibitory neurons in the 4-neuron circuit and 
titrate the amount that a particular modality from the first layer contributes. 
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To do this we use a similar decision network in layer two. However the two excitatory neurons of the first layer are 
replaced with two copies of a well-studied 4-neuron circuit (Figure 3B) The 4-neuron circuit is a highly flexible motif that 
is easy to control 43. The 4-neuron circuit has two mutually connected excitatory neurons and two mutually connected 
inhibitory neurons, and the inhibitory neurons provide inhibitory feedback to the excitatory neurons. This gives it the 
ability to flexibly integrate information, and make decisions based on the information presented to it. Moreover, the circuit 
is controllable with top down control into the inhibitory neurons (represented by the yellow and cyan bias currents). This 
allows the 4-neuron circuit to titrate which stimuli property (Gabor orientation or pedestal luminance) to use to classify 
information. In the case that one property is ambiguous (e.g. orientation), the other property (e.g. luminance) can be used 
to make the classification.  

Like layer 1 the classification is mediated by a central inhibitory neuron that inhibits the 4 neuron-circuit’s excitatory 
neurons. In this way, at least one of the 4-neuron circuits will be active, thus segregating the image into two populations. 
Just like layer 1, there are also two global inhibitory neurons to help constrain firing rates.  

 

  

 

 

Figure 4. Neuromorphic Gabor filter output 
A. Visualization of neuromorphic Gabor filters outputs. (Ai) Raw input into the Gabor Orientation network. In this example, 45° Gabors 
are at darker patches, and 135° Gabors are at lighter patches. The central patch (highlighted by red box) contains both 45° and 135° 
Gabors at weaker 2% amplitude, resulting in an ambiguous orientation input. Of the 24 surrounding patches, the 12 45° patches have 
similar luminance as the central target, whereas the remaining 12 135° patches have a different luminance. (Aii and Aiii) The output 
shows how the decision network classified the input orientation. (Aii) shows the results without all-to-all boosting. Note the 
misclassification of the central patch orientation as 135°. (Aiii) shows the results with all-to-all boosting, with facilitation of the 45°
orientation consistent with psychophysical phenomenon of lateral ‘facilitation’ of a weak co-oriented central Gabor by flankers with 
similar luminance as the target. B. A parameter sweep shows the sensitivity to central Gabor amplitude required to elicit a boosted 
response. The central Gabor amplitude is swept from 0.1% amplitude to 2% amplitude. (B inset) Shows an expanded view of the 
transition amplitude. Note the sudden increase in firing rate at about 1% amplitude. 
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3. RESULTS 

In order to test the network, we first examined whether the network is able to boost the signal of a weak ambiguous 
pair of Gabors. We presented the network with a square grid of 25 patches with 12 Gabors oriented at 45° and 12 Gabors 
oriented at 135°. The central patch is a contrast mixture of two Gabors oriented at 45° and 135°. A sample input to the 
network is shown in Figure 4Ai. The central Gabor has 2% of the amplitude of that of the other 24 Gabors. We consider 
two conditions. First, we consider the network without all-to-all connections between the excitatory neurons, by setting 
their all-to-all connection weights to zero (Figure 4Aii). Without boosting, the network is unable to detect and correctly 
classify the central Gabor’s signal. As such both the 135° and 45° neurons remain OFF, or with injected noise, they are 
both equally activated. However, with the synaptic weights of the all-to-all connections set to non-zero, the network is 
suddenly able to classify the weak central Gabor and correctly assign it to 45°, due to co-excitation from neighboring 45° 
patches that have similar luminance to the central target (Figure 4Aiii). These results are consistent with thepsychophysical 
phenomenon that flankers with similar orientation as a weak central target can facilitate and boost that target’s 
detectability. 

Next we determine how sensitive the network is to weak Gabors, and attempt to quantify the minimum amplitude 
required to boost the signal. To test this we tested the network with a 60%:40% mixture of two Gabors at 45° and 135°, 
and incrementally increased its maximum amplitude from 0.1% to 2.0%. As shown in Figure 4B, we see a sudden jump 
at approximately 0.98% the amplitude of the flanker Gabors. Interestingly, we see a sudden jump in the firing rate of the 
neurons. This hints at an underlying saddle-node bifurcation that is common in all-to-all excitatory networks 32, 43.  

After establishing that all-to-all excitation can boost weak signals, we tested whether the whole network is able to 
facilitate identification of an ambiguous central Gabor in the Luminance Similarity condition and cannot facilitate 
identification of an ambiguous central Gabor in the Luminance Brightest condition. This mirrors results presented in our 
previous human behavioral study 1. Also consistent with our human results, facilitation was only present when there was 
a preceding flash, tested at 50 to 1000 times brighter than the luminance pedestal (Figure 2C).  

In both conditions all luminance pedestals are ranked-ordered from brightest to least brightest. The central Gabor is 
always the 13th brightest. In the ‘Similar’ luminance condition (Figure 5A), the luminance pedestals of all Gabors oriented 
45° (135°) ranged from 7th brightest to 18th brightest. That is, the central Gabor’s orientations match patches with similar 
brightness. In the ‘brightest’ condition, the luminance pedestals of all Gabors oriented 45° (135°) range from 1st brightest 
to 13th brightest. That is, the central Gabor’s orientation matches the brightest patchess. 

To test the network's performance, we measured the average firing rate, during 1-2 second period post Gabor onset, 
of both excitatory neurons in the 4-neuron circuit associated with the correct answer. We also measured the average firing 
rate of both excitatory neurons in the 4-neuron circuit associated with the incorrect answer. We considered the network 
output to be correct if there were a positive difference between the correct and incorrect answer. As expected, we found 
that in the Luminance Similarity condition the network was more likely to classifying the central Gabor correctly (Figure 
5B). Moreover, it facilitates the classification of ambiguous stimuli of 45%:55% (Figure 5C left, blue curve). That is, the 
network was able to resolve the ambiguity, and used correlations in brightness information to choose the correct 
orientation. Furthermore, target stimuli that are perfectly ambiguous (50%:50% contrast mixture) are about 15% more 
likely than chance to be classified as 45° orientations.  

However, in the Luminance Brightest condition the network was unable to resolve the ambiguity, as the correlation 
between flanker and target orientation was perfectly balanced between bright and dark. As a result, brightness provided 
no useful information to help classify the stimuli. This was evident as for ambiguous target contrast mixtures near 
50%:50% (Figure 5C left, yellow), the target was less likely to be identified as 45°, and the Luminance Similarity condition 
was about 30% more likely to be identified as 45° compared to the Luminance Brightest condition.  

 As expected from our previous human behavioral results, when the preceding flash was removed, the facilitation 
effect was abolished (Fig. 5C right). This is evidenced by the overlap of the curves for the Luminance Similarity and 
Luminance Brightest conditions. Specifically, when the preceding flash was removed, there is no more facilitation (as 
evidenced by a lack of leftward shift away from the 50%/50% mark). Moreover, the difference between the two conditions 
was statistically insignificant. 

As a final demonstration we tested the ability of the first layer of the network to interpret a synthetic image. Our image 
(Figure 6A) was composed of 45° sinusoidal gratings at a range of contrasts (0 to 50% Michelson contrast against a gray 
background), spanning the entire image, with the strongest contrasts along the bottom-left to top-right diagonal. At the  
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Figure 5. Neuromorphic facilitation depends on luminance similarity 
A. Schematic of 25 patches (abscissa) sorted by luminance level (ordinate). The central Gabor orientation can match either the 
orientation of the brightest patches (‘Luminance Brightest’ condition, right) or the orientation of the patches with the most similar
luminance (‘Luminance Similarity’ condition). In each of these conditions, Cond. A is when the relevant flanker patches are oriented 
45°, and Cond. B is when the relevant flanker patches are oriented 135°. B. Example activity levels of 45° and 135° units across 
Luminance Similarity and Luminance Brightest conditions for Cond. A. Gray shading indicates unit activity level, not patch luminance. 
C. Psychometric curve showing proportion of trials in which the unit for the central patch reports 45° (ordinate) across variations in the 
actual contrast mixture of the central target for 45° vs 135° (abscissa). Each point is based on 25 trials. Left, As expected, the target 
reports are correct for the extreme conditions at left and right (over 60%:40 or less than 40%:60% contrast mixture). For ambiguous 
stimuli, the output is biased towards 45° in the Luminance Similarity condition (blue), when the relevant flankers are also 45°. The bias 
is abolished for the Luminance Brightest condition (yellow). Right, The facilitation effect is also abolished in the absence of the 
preceding luminance flash. These results are consistent with our recent human behavioral study (Hung et al. 2020). 
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right half of the image, these are additively combined with 135° square-wave gratings of fixed 50% contrast (symmetrical 
biphasic duty cycle). The appearance is that of a wrinkled sheet with physical undulations oriented 45° but textured stripes 
oriented 135°. The center of the image is overlaid by a dark opaque disc, by dividing the luminance of each pixel by 10, 
resulting in a contrast of 5% for each grating. This disc has the appearance of a cast shadow that greatly weakens the 
apparent contrast of the two gratings, but they both remain discernable. The network divides the image into a 5×5 set of 
regions (‘patches’) and pre-processes the image by computing the luminance contrast magnitude of each of the 45° and 
135° orientations within each patch, by convolving with a sinusoidal filter. The goal of the network was to report the 
apparent contrast strength at 45° and 135° orientations in each patch. 

Fig 6B shows the results of the network with and without the all-to-all boosting. In both cases, the neurons sensitive 
to 45° stimuli detected the strongest sinusoidal gratings, and the 135° neurons detected the square-wave gratings in areas 
not overlaid by the sinusoidal gratings. In regions where both orientations are strong, the network result is dominated by 
45° because of its stronger sensitivity to sinusoidal gratings. The effect of boosting can be seen at the central patch. Without 
boosting, the network fails to identify both 45° and 135°. With boosting, the network detected the 45° grating but not the 
135° grating, consistent with perceptual facilitation by the more prevalent 45° flankers. Boosting also elevated the 
sensitivity to the low contrast 45° grating at the upper left and bottom right corners. At the top middle of the image, 
boosting also elevated the sensitivity to the 135° grating when it overlaid a medium-contrast 45° grating. 

 

4. CONCLUSION 

We constructed a LOIHI-implementable spiking neural network that reproduced human behavioral results showing 
that grouping by HDR luminance similarity can bias orientation perception. Moreover, we have shown that we can process 
and extract textural information from complex stimuli using a small and energy efficient circuit. Using a recurrent neural 
circuit, we were able to reproduce the observed effect of facilitation of ambiguous stimulus orientation, depending on the 
specific combination of flanker orientation and luminance similarity. This implies that the neural mechanisms of weak all-

Figure 6. Neuromorphic facilitation of a cast shadow region 
A sample image with gratings processed by the network. A: The image is comprised of 45° sinusoidal gratings with contrast varying 
across the image, with additive 135° square-wave biphasic gratings on the right side of the image. The center of the image has a shadow
disc that reduces grating contrast to 5%. B: Results of the first layer of the network for 45° units (top row) and 135° units (bottom 
row). Darker shading indicates stronger unit activity. Without boosting (left column), neither grating is detected under the shadow.
Boosting (right column) enhances the detection of the 45° grating under the circular shadow (red square), consistent with the more 
prevalent 45° grating in surrounding regions. 
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to-all excitations, divisive normalization from global inhibitory neurons, and inhibition-based local decision making are 
sufficient to explain the phenomenon of HDR luminance-based contextual grouping after sudden darkening. Although our 
computations are based on SDR images, we suggest that it is very feasible to extend this tonemapping and feature grouping 
effect to HDR images by incorporating logarithmic luminance sensors as a front-end 44. 

 

5. DISCUSSION AND FUTURE WORK 

While our preliminary neuromorphic results are able to reproduce the psychophysical phenomenon of ‘facilitation’ 
(boosting weak stimuli via feature grouping), and while our results show extensibility to HDR contrast gain normalization 
and tonemapping, we have not yet attempted to replicate all of our previous psychophysical effects of contextual 
modulation. Specifically, our previous behavioral experiment tested for contextual grouping effects across three different 
groups of luminance pedestals (three different types of ‘articulation’ comprised of different combinations of up to 25 
different luminance pedestals). However, our model only classifies luminance pedestals into two groups, and does not 
consider more fine grained classification of stimuli.  

To incorporate more groupings, we need to increase the number of luminance groups to three or more. This is 
relatively easy by simply expanding the number of excitatory groups we have in the first layer, as one decision inhibitory 
neuron can easily service multiple excitatory neurons. In order to correctly synthesize this information in the second layer, 
we will need to introduce a simplified version of a dendritic arbor 45. Here the dendritic arbor is responsible for multimodal 
integration, as each branch of the dendritic tree represents one possible group of pedestal luminances. An inhibitory control 
neuron uses shunting inhibition to gate which dendritic branch is silenced. This is based on the local connectivity of VIP 
and SST neurons that is key for incorporating contextual information in the cortex 33. This neural architecture could allow 
the network to handle arbitrary synthesis and perception of groups while still reproducing the particular results of the 
experiment. Moreover, because of the dendritic tree, this model could scale easily to other modalities such as color, shape, 
or texture.   

 
Nonetheless, our modeling results confirm that such that our network is capable of grouping stimuli based on the 

luminance and texture. Moreover, it can handle spatial variability (variability in Gabor amplitude and luminance 
brightness).  However, we have not dealt with the temporal variability. Moving forward, we will need to construct decision 
networks that integrate evidence over a short period of time. Specifically making use of basins of attraction that are not 
too sensitive to random fluctuations over a short period of time. This has been well worked out in the literature 31.  

 
Our circuit has not been tested with natural images. Extending these results to real natural images will be a key goal 

moving forward, for tasks such as autonomous flying46. Environments such as wooded areas with sun shining and wind 
blowing through a canopy of leaves, or an unilluminated building with a sunlit outside are common HDR environments. 
However, extending this network to natural scenes such as this will require a large increase in neuron number and number 
of layers. Moreover, any investigation of the usefulness of our networks needs to compare them to feedforward models 
such as convolutional neural networks (CNN) 47, 48 and connectionist models 49, 50. Furthermore, it would be nice to 
compare the statistics of these models to psychophysics results. A good framework for achieving such a comparison with 
maximal likelihood has been laid out by others 51.  

 
However, given any optical flow algorithm, there is often an error associated with changing luminance and with 

estimating shape under uneven illumination 1, 2, 52 (Figure 1). This is because optical flow is generally computed frame to 
frame. If luminance changes suddenly (as would occur from moving shadows in a windy forest), there could be widely 
changing optical flow values. This can make tasks such as horizon tracking 53 and object tracking and avoidance difficult. 
The problem is compounded under uneven illumination, because estimating surface slant and shape is interdependent with 
estimating surface reflectance. This ‘inverse problem’ of estimating 3D shape from a 2D image requires biological visual 
systems to make simplifying assumptions, and it is thought that one assumption is that nearby or related surfaces are under 
similar illumination. Our neuromorphic circuit linking orientation and luminance computations provides a possible 
structure for untangling the interdependencies of nearby surface contrasts. 

 
In the future, we plan to apply our model to improve optical flow performance in high-contrast environments by 

creating stable representation of contrast and texture across different lighting levels for realistic videos. Moreover, we plan 
to use the neuromorphic LOIHI chip as a module that can be coupled with optical flow algorithms to reduce the error in 
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HDR environments. More specifically, our circuit has the potential to act as a top-down control (e.g. to selectively 
emphasize certain modalities) for the preprocessing step for video information. By contextually normalizing and stabilizing 
the contrast and texture in each frame, ideally any optical flow algorithm will show improvement in estimated optical 
flows. 
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