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1 Introduction 

When searching and navigating a visual environment, it is 
necessary to make sense of areas of high illumination and dark 
shadows simultaneously, particularly in high dynamic range 
(HDR) luminance visual scenes with clutter and locally varying 
illumination. This poses a challenge for cameras due to their 
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ABSTRACT 

Contextual grouping mechanisms in early visual cortex are 

thought to aid in perception of ambiguous textures, including 

partially obscured targets under real-world high dynamic 

range (HDR) luminance. Yet, deep neural networks struggle 

with naturalistic obscuration and illumination while requiring 

millions of neurons and power-hungry GPUs for processing. We 

hypothesized that contextual grouping mechanisms for edge 

and luminance processing may aid in localization of targets 

under natural obscuration and illumination. To address this 

issue, we developed a novel small (< 10,000 neurons) spiking 

neural network (SNN) that uses spike time correlations to 

leverage the combined luminance and orientation similarity of 

nearby image regions for image pre-processing, to support 

downstream deep neural network (DNN) target localization. 

The network has leaky integrate-and-fire neurons with current 

based (CuBa) synapses and is simulated using the Nengo LOIHI 

API, with potential application via Intel's LOIHI neuromorphic 

hardware. We collected 89 HDR images of a target dummy in a 

heavily wooded environment under varying occlusion and 

illumination. We used SNN preprocessing to adjust local image 

contrast based on the grouping mechanism, followed by a DNN 

classifier (Detectron2) to localize the target. Results show that 

a small SNN for image preprocessing can aid image 

segmentation and localization of occluded targets, marking an 

initial step towards more efficient and accurate target 

recognition under natural illumination and occlusion. 
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limited dynamic range, as cameras either capture limited light 
or become oversaturated [1,2,3]. To address this, the industry 
standard is to blend together three low dynamic range (LDR) 
images taken at different exposures [3,4,5] However, this 
process can require offline processing of the video [1], and 
results are poor even with large, power-hungry convolutional 
neural networks [4,5]. Moreover, it does not account for 
natural variations in illumination direction and cast shadows 
e.g. under a forest canopy. In contrast, biology solves this 
problem with fewer resources by using divisive normalization 
to dynamically compensate for HDR light levels [2], along with 
contextual grouping mechanisms to improve our ability to 
disentangle illumination to perceive lightness and shape, as 
demonstrated in animals [3, 4] and in humans [5]. Proper 
normalization in HDR environments is crucial for downstream 
computations, such as target recognition and localization. The 
problem is compounded by obscuration in a heavily wooded 
environment, where leaves can create artifacts such as locally 
varying illumination (including direction) and shadows that 
can make it difficult to estimate shape and that hinder DNNs 
from accurately localizing the target. Therefore, normalizing 
for illumination is a vital preprocessing step for interacting 
with a real environment.  
     It is well known that contour perception depends on 
integration across nearby regions [4, 6, 7] and that shape 
perception is confounded by the impossibility of disentangling 
the combined effects of illumination and surface slant on 
apparent lightness (the ‘inverse problem'). We hypothesized 
that the brain performs illumination-shape disentanglement by 
inferring the likely illumination from nearby surfaces and 
grouping related elements to compute the shape feature of a 
target surface [8], supported by interactions between 
luminance detectors and edge detectors in visual cortex [9]. 
Previous reports showed that the luminance of surrounding 
elements strongly modulates perceived lightness of a central 
target [10], including under HDR luminance conditions [11-13]. 
Recently, we extended our understanding of luminance-edge 
interactions to the HDR domain by discovering a 
psychophysical phenomenon, where the contextual grouping 
of nearby co-oriented patches with similar HDR luminance 
biases the perceived orientation of a central patch [8]. With a 
previous version of this SNN, we were able to reproduce this 
human perceptual phenomenon[14]. However, it was tested 
only on artificial images and was not tested on natural images, 
and the performance of our neuromorphic algorithm was not 
tested as a pre-processor for a DNN. 
     Here, we sought to extend our SNN to enhance target 
localization under partial occlusion. Our approach is supported 
by several discoveries from prior cortical research. Grouping of 
similar visual elements is known to result in contextual 
facilitation [6], i.e. an improved sensitivity to a weak target  
which occurs due to specific interconnections between 
luminance clusters and orientation clusters, as well as feedback 
from higher cortical regions [9]. The micro-structure of the 
cortex [15] and inhibitory interneurons [16-19] contribute to 
the grouping of similar stimuli, including lateral, feedback 
inhibition, and mutual inhibition. Mutual inhibition enables 
cortical regions to segregate similar visual information into 
different distinct sets of neurons with distinct neural activity 
[16, 17, 19]. This is achieved through inhibitory neurons 

"deciding" the group a particular visual feature belongs to [16-
18, 20, 21]. Additionally, once the visual features have been 
grouped, they remain in those groups due to the robustness of 
the segmentation process to perturbations (such as shifting 
luminance in high contrast situations), with the visual percepts 
"stuck" in their basin of attraction [16, 17, 19, 20] . 
     With this understanding of the basic computational 
structure for edge-luminance interactions, our aim was to 
evaluate an SNN's ability to improve automatic target 
recognition in a heavily occluded HDR forest setting. We 
modified our previously developed spiking neural network 
[14] to preprocess images by automatically reducing local 
contrast (e.g. of the background forest) before passing them to 
a DNN for target detection and localization. To do this, we used 
LOIHI neuromorphic hardware emulated with Nengo [22, 23]. 

2 Methods 

2.1 HDR images in a Wooded Environment 

We used a Nikon D7100 camera to capture 424 shots featuring 

targeting dummies in a forested area during the summer 

(Figure 1). Each shot comprised a 6000 x 4000 pixel high 

dynamic range (HDR) lossless 14 bit NEF image and an 8 bit JPG 

image. For each camera and dummy location, we captured 

multiple shots by fixing the ISO at 200, f 2.2, and logarithmically 

varying the exposure duration. To pose real-world challenges 

for automatic target recognition, we placed the targets across a 

range of lighting and occlusion conditions and camera 

distances, and we pseudorandomly balanced the target 

positions across the image frame to evenly span x-y pixel 

positions across different levels of occlusion. We perceptually 

grouped the images into four categories according to the 

approximate level of occlusion by leaves, varying from 0-24% 

(‘0%’), 25-49% (‘25%’), 50-74% (‘50%’), and 75-90% (‘75%’) 

occlusion (Table 1). 

Figure 1: HDR illumination in a wooded area. Example 

images of a targeting dummy in a wooded area captured 

with (A) high exposure, (B) low exposure, and (C) an HDR 

image. The different exposures highlight the importance of 

proper exposure control in outdoor shooting scenarios. 

(D,E,F) A scene with more regional variation in HDR 

illumination, highlighting the need for localized luminance 

normalization. The heavily occluded target is at the 

horizontal midline, just right of center. 
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Table 1: Number of images 

 

     For this initial study, we ignored the NEF images and 

selected the 89 JPG images whose exposure captured the 

widest range of luminances in the image. We then decimated 

the images to 600 x 400 pixels and saved them in JPEG format. 

We subdivided the 89 images into training (34), validation 

(15), and test (40) sets. The training and validation images 

were used to train our deep neural network (DNN, Detectron2, 

https://github.com/facebookresearch/detectron2) and to 

develop parameters for neuromorphic analysis. The test 

images were withheld from the network until final testing. The 

resulting dataset is a valuable resource for future studies in the 

field of computer vision, particularly in the development and 

evaluation of algorithms designed for image processing and 

analysis in forest environments. 

 

2.2 Simulation Environment 

We used Nengo, a Python-based scripting language for neural 
networks [22], to emulate the LOIHI chip spiking neural 
network (SNN) developed by Intel [22, 23]l, which contains LIF 
neurons connected by Current Based (CuBa) synapses. The LIF 
neuron is a differential equation that captures the essence of a 
biological neuron’s action potential and synaptic dynamics, and 
can be described by a system of differential equations:  

𝐶𝑚
𝑑𝑉𝑖

𝑑𝑡
= 𝑔𝐿(𝑉𝑖 − 𝐸𝐿) + 𝑢𝑖     when 𝑉𝑖 > 𝑉𝑡ℎ  then 

𝑉𝑖 → 𝑉𝑟𝑒𝑠𝑡 

𝑢𝑖(𝑡) = 𝑔𝑖𝑗  𝛼(𝑡) ∗ ∑ 𝛿𝑗(𝑡 − 𝑡𝑠𝑝𝑖𝑘𝑒)

𝑗

 

where 𝑉  is the membrane voltage, 𝐶𝑚  is the membrane 
capacitance, 𝑔𝐿  is the leak conductance, 𝐸𝐿  is the leak current, 
𝑉𝑡ℎ  is the voltage threshold, and 𝑉𝑟𝑒𝑠𝑡 is the reset voltage. Here 
𝑢𝑗 (𝑡)  is the synaptic current. We used the standard 
parameters for a LOIHI LIF neuron [22]. The LIF neuron 
captures the essence of a biological neuron’s action potential 
and synaptic dynamics and can be described by a system of 
differential equations. Whenever the membrane voltage V 
exceeds the voltage threshold Vth, the neuron fires a spike, 
which is used to calculate the synaptic current using the 
equation 𝑢𝑖(𝑡) = 𝑔𝑖𝑗  𝛼(𝑡) ∗ ∑ 𝛿𝑗(𝑡 − 𝑡𝑠𝑝𝑖𝑘𝑒)𝑗 . Here the 

current is a convolution with exponential decay term  𝛼(𝑡) =

 
𝑒

𝑡
𝜏

𝜏
  and the sum of all the presynaptic spikes  ∑ 𝛿𝑗(𝑡 −𝑗

𝑡𝑠𝑝𝑖𝑘𝑒) . The synapse weight is 𝑔𝑖𝑗  is excitatory when gij > 0, 

and it is inhibitory otherwise. Nengo provides a convenient 
environment for parameter constraining and network 
simulation, and we use the default parameters for LOIHI in 
Nengo [22, 23]. 

2.3 SNN Architecture  

We used the LIF model implemented by LOIHI to construct the 
network. All synaptic weights are in Table 2.  We previously 
reported that a recurrent spiking neural network could 
reproduce experimental results from our previous study [8] 
[14]. Here, we extended this SNN to real-world images. We 
divided the visual field into patch arrays of 5x5 pedestals, each 
pedestal comprising 5x5 pixels (Figure 2A). For each pedestal, 
we processed two types of sensory information. Luminance is 
calculated as the average luminance of the pedestal. 
Orientation is computed as a convolution of the pedestal with a 
Sobel filter oriented horizontally or vertically. 
     We segregated dark and light luminance pedestals using 
ON/OFF neurons with sigmoidal activation curves. ON neurons 
had a sigmoid that increased with luminance, while OFF 
neurons had a sigmoid that decreased with luminance. The 
threshold and steepness of the sigmoid were the same for all 
pedestals, with the steepness modulated by the variance of all 
pedestals (set to a minimum if variance was zero) and the 
threshold modulated by the average luminance across all 
pedestals. Each patch array was processed by its own similar 
subcircuit (see Figure 2B). 
     Each pedestal was also encoded by an orientation group 
comprised of two excitatory neurons encoding horizontal and 
vertical orientations, both of which are connected to a central 
inhibitory neuron that suppresses the two excitatory neurons. 
Each of the 25 pedestals within a patch array had a separate 3-
neuron group. This created a decision network, where only one 
of the excitatory neurons could be active at a time. 
     Within each patch array, all 25 excitatory neurons of the 
same orientation were connected to each other, resulting in 
two all-to-all networks. This boosted weak inputs of similar 
neighboring pedestals, resolving the apparent orientation of 
pedestals with ambiguous orientation. We also included a 
global inhibitory neuron to control the firing rate of the 
excitatory populations. We duplicated the same circuit for the 
luminance pedestals. However, here the receptive fields were 
the ON and OFF neurons for each pedestal, resulting in the 
pedestals being grouped into dark versus light pedestals. 
     Layer 1 captured the boosting of weak stimuli and HDR via 
gain normalization but did not capture the effect of contextual 
modulation of the combination of luminance and orientation 
pedestals. Our previous behavioral experiment tested two 
hypotheses of contextual grouping by testing stimuli with 
different combinations of luminance and orientation 
similarity. To integrate these two modalities (luminance and 
orientation) for contextual grouping, we used a similar 
decision network in layer two, replacing the two excitatory 
neurons of the first layer with two copies of a 4-neuron circuit 
(Figure 2C).  

%Occlusion 0%  25% 50% 75% TOTAL 

Training 7 10 12 5 34 

Validation 3 5 2 5 15 

Test 10 10 10 10 40 

TOTAL 20 25 24 20 89 
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Figure 2: Spiking neural network (SNN) circuit schematic. 
(A) Every image is subdivided into patch arrays composed of 
5x5 pedestals. Each pedestal is 5x5 pixels. Neural circuit 
architecture: (B) In Layer 1, two all-to-all excitatory neuron 
groups (red) represent each grid location, with an 
inhibitory neuron (blue) enforcing exclusivity between 
stimulus groups. (C) Luminance and Orientation 
information are passed from Layer 1 to Layer 2. The 
network has no output in the traditional sense; the 
synchronization of Layer 2 neurons is the output. 
Additionally, a global inhibitory neuron maintains optimal 
firing rates. In Layer 2, 4-neuron circuits replace excitatory 
neurons and allow for the integration of different 
modalities. Excitatory control neurons (cyan and yellow) 
regulate the contribution of each modality from the first 
layer. See Table 2 for synaptic weights. 

 

Table 2: Network parameters 

 

     The 4-neuron circuit is a flexible motif that is easy to control 
[14, 19]. It has two mutually connected excitatory neurons and 
two mutually connected inhibitory neurons, with the inhibitory 
neurons providing inhibitory feedback to the excitatory 
neurons. This gives it the ability to integrate information 
flexibly and make decisions based on the information 
presented. The circuit is controllable with top-down control 
onto the inhibitory neurons (represented by the yellow and 
cyan bias currents), allowing it to titrate which feature 
(orientation or luminance) to use for grouping. In the case of 
ambiguous stimuli, titration allows for the other property to 
contribute to the grouping. Like Layer 2, the grouping was 
mediated by a central inhibitory neuron that inhibited the 4-
neuron circuit's excitatory neurons. In this way, at least one of 
the 4-neuron circuits was active, thus segregating the image 
into two populations. Just like Layer 1, there were also two 
global inhibitory neurons to help constrain firing rates. The 
network parameters for this circuit are listed in Table 2. 
     To pre-process images with our SNN, we initially converted 
them to grayscale. The grayscale image was then fed into the 
luminance detection side of the network. For the texture 
detection side, we first applied a 7-pixel Gaussian blur to the 
image to reduce noise (Figure 3A). Following the SNN 
processing described above, we obtained firing rate (Figure 
3B) and synchrony (Figure 3C) from the activity of neurons in 
Layer 2. Further image pre-processing was based on the 
synchrony, and the firing rate information was not used. 
 
      

Layers 
1 & 2 

All-to-All 
Excitation 

Excitation to 
Local 
Inhibition 

Local Inhibition to 
Excitation 

Excitation to 
Global 
Inhibition 

 0.01 0.5 -0.5 0.005 

Layers 
1 & 2 

Global Inhibition 
to Excitation 

Layer 1 to 
Layer 2 
connection  

Synaptic Time 
constant 

 

 0.025 6.0 0.005 sec  

Layer 
2 only 

Excitation to 
Excitation 
(within 4-neuron 
microcircuit) 

Excitation to 
Inhibition 
(within 4-
neuron 
microcircuit) 

Inhibition  to 
Excitation (within 
4-neuron 
microcircuit) 

 

 1.0 0.25 -0.25  

Layer 
2 only 

Inhibition  to 
Inhibition  
(within 4-neuron 
microcircuit) 
 

Bias into 
inhibition 1 
neuron 
(yellow)  

Bias into inhibition 
neuron 2 (cyan)  

 

 -0.5 -0.1 0.0  
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2.4 Contrast Adjustment and DNN   

To avoid the granularity associated with firing rates, we 
implemented Golomb's metric for synchronization in our 

network [24]. Synchronization 𝜒2 =
𝜎𝑉

2

1

𝑁
𝛴𝜎𝑉𝑖

2
 where  𝜎𝑉

2  was the 

variance of the sum of all voltage traces across all neurons, 
while 𝜎𝑉𝑖

2  was the variance of a single voltage trace. The 

synchronization metric involved looking for spike time 
correlations between excitatory neurons within Layer 2. 
Synchrony implied the pedestals had similar luminance and 
texture properties. We calculated the synchronization across 
all 25 pedestals within a patch array (not across all patch 
arrays), that is, the synchronization of 1500 neurons in layer 2. 
Figure 3C shows the synchronization indices across an image. 
     Subsequently, we employed the synchronization metric to 
attenuate the contrast of specific patch arrays in the image. The 
premise is that highly synchronized patch arrays indicate 
interesting objects for the network to attend to, while poorly 
synchronized ones can be disregarded. Therefore, we adjusted 
the new pixel value 𝑐 downward based on the synchronization 

level  𝜒2 , with 𝑐 = (𝑓 − 0.5)
1+𝑡𝑎𝑛ℎ(𝑘 𝜒2)

2
+ 0.5  where 𝑓  is the 

original pixel value (between 0 and 1).  Note that this equation 
has a free parameter 𝑘 =  −0.6 which controls how much the 
patch array’s contrast is attenuated by lack of synchrony. We 
tested the network with different 𝑘  values to determine the 
optimal 𝑘. Figure 3D shows an example of an image after SNN-
based contrast adjustment. This adjusted image was then 
passed to a deep neural network (DNN, Detectron2), a standard 
“GeneralizedRCNN” meta architecture, which consisted of a 
resnet Feature Pyramid Network (FPN) backbone trained on 
the COCO dataset, running on Python 3.7.9, CUDA 11.0, and 
Tesla P100-16GB on an HPE SGI 8600 system. The FPN had a 
top-down architecture with lateral connections to extract 
features at different scales (Ren et al., 2015). By using 
desynchronization to attenuate local image contrast, we aimed 
to draw the DNN’s attention away from background noise and 
emphasize important visual features that are more likely to be 
correlated and grouped across nearby regions of the image, 
facilitating effective object recognition by the DNN. 

3 Results 

3.1 Color Images 

We used the Detectron2 DNN to detect a targeting dummy 
using 34 training images, 15 validation images, and 40 test 
images. We compared the output of the DNN without versus 
with SNN preprocessing. In the case of SNN preprocessing, the 
DNN was both trained and tested on pre-processed images. 
Figure 4 shows sample output images, including true positives 
(Figs. 4A and 4C) and false positives (Figs. 4B and 4D). Figs. 4A 
and 4B show results of training and testing without pre-
processing, and Figs. 4C and 4D show results of training and 
testing on pre-processed images. We tested 10 images in each 
of the four occlusion brackets (0%, 25%, 50%, and 75%), with 
versus without pre-processing. The results showed that the 

Figure 3: Image preprocessing example. Analysis of a 
target dummy in a wooded environment. (A) Raw 
grayscale image of the dummy (lower left) captured in its 
natural environment. (B) Firing rate output of the SSN, 
with white indicating higher firing rates. (C) 
Synchronization index for the patch arrays, with white 
indicating higher synchronization. (D) Contrast-adjusted 
image for enhanced visual clarity. These results provide 
insight into the neural responses to visual stimuli in a 
naturalistic setting. 

true positive rate decreased as the level of occlusion increased.  
SNN preprocessing of the image weakly improved the true 
positive rate for all occlusions except 0% (Fig. 4E), and this 
improvement was significant at 50% occlusion (31.25% TP 
without preprocessing, 38.75% TP with preprocessing, i.e. a 
24% relative improvement with SNN, p < 0.02, n = 8 
permutations of 34 Training and 15 Validation images) without 
significantly affecting false positives except in the 0% occlusion 
condition (Fig. 4F). This suggests that our preprocessing circuit 
can be effective in increasing true positive rate in more 
challenging conditions. 

3.2 Grayscale Images 

Next, we examined the effect of SNN pre-processing on 
grayscale versions of the same training, validation, and test 
images. Again, we compared the DNN output with versus 
without SNN preprocessing across the four occlusion brackets. 
Figure 5 shows sample images of true positives (Figs. 5A and 
5C) and false positives (Figs. 5B and 5D) resulting from the 
DNN, with (Fig. 5C, 5D) and without SNN preprocessing (Fig. 
5A, 5B). Overall the DNN had better performance (more true 
positives, fewer false positives) for color versus grayscale 
images. SNN preprocessing weakly but non-significantly 
improved true positives across all four occlusion brackets (Fig. 
5E). SNN preprocessing tended to reduce false positives in the 
75% and 50% occlusion bracket and increase false positives in 
the 0% and 25% occlusion brackets, but these differences were 
not significant (Fig. 5F). These results with grayscale images  
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Figure 4: Color SNN preprocessing improved detection 
under occlusion. Analysis of deep neural network (DNN) 
performance on target detection in wooded environments. 
(A) Example of a DNN correctly localizing the targeting 
dummy. (B) Example of DNN result with a true positive 
(yellow box) and a false positive (red box). (C) Example of 
an SNN-preprocessed DNN output correctly identifying the 
targeting dummy. (D) Example of an SNN-preprocessing 
image with a true positive (red box) and false positive 
(blue box). (E) Comparison of DNN true positive results 
without (orange) versus with (blue) SNN preprocessing, 
across levels of occlusion. (F) Comparison of DNN false 
positives grouped by occlusion. * p < 0.02, ** p < 0.01, n =  
8, uncorrected for multiple comparisons 

are generally consistent with those with color images, although 
here the differences were not significant. 

4 Conclusions 

The results of our study demonstrate the effectiveness of using 
spiking neural networks for image preprocessing, to improve 
machine vision performance in detecting targets under partial 
occlusion and natural illumination in a wooded environment. 
We showed that for color images, SNN preprocessing 
significantly improved the true positive detection rate by 24% 
at moderate (50%) occlusion without significantly affecting the 
false positive rate. For grayscale images, SNN preprocessing 
had weak but non-significant improvements to both true 
positives and false positives, and the improvement was better 
for the occluded conditions (25% and greater). 
     It is important to note that these improvements in DNN 
performance were achieved with our initial attempt at an SNN 
image preprocessing circuit, building upon prior developments 
in SNN-based decision circuitry. Due to the limitations of 
software emulation, we were only able to test a simplified 

Figure 5: Grayscale preprocessing had no significant effect 
on true positives and false positives. (A) An example of an 
unprocessed image resulting in a true positive, correctly 
identifying the targeting dummy. (B) A DNN result with a 
true positive (red box) and two false positives (green and 
blue boxes).  (C) Same as above, but with SNN 
preprocessing showing a true positive, correctly 
identifying the targeting dummy. (D) A preprocessing 
result with a true positive and a false positive. (E) DNN true 
positives grouped by occlusion level, comparing results 
without (orange) versus with (blue) SNN preprocessing. 
(F) DNN false positives grouped by occlusion level. p = n.s., 
n = 8 

circuit with two orientations, two luminances, one spatial 
frequency, and highly spatially-restricted contextual 
processing. Also, although our circuit is designed with the goal 
of implementing it on HDR images, these initial tests were with 
SDR images, so they do not leverage the full capabilities of SNN 
preprocessing. Nonetheless, our findings suggest that our SNN 
preprocessing circuit approach can improve the real-world 
robustness of DNN-based object detection systems, especially 
in challenging conditions with high occlusion and non-uniform 
high-dynamic range illumination. 

5 Discussion and Future Work 

Our results suggest that it may be useful to reconsider what is 
a pre-attentive feature for visual search. Wolfe and Utochkin 
[25] argue that whereas color and orientation are features, the 
conjunction of color and orientation is not a ‘feature’ because it 
can be decomposed to color versus orientation. However, this 
definition of feature is driven by the notional ideals of feature 
separability for design of experimental stimuli, whereas ample 
neurophysiological evidence supports a continuum of feature 
processing and tight integration within early visual cortex of 
cats and monkeys [8, 26] in support of pre-attentive vision 
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(likely also in support of top-down attention). Our SNN image 
pre-processing results show that grouping effects from 
combining luminance and edge processing can improve target 
recognition by a DNN, and this is also apparent from the pre-
processed images themselves (Fig. 3D). 
     Our results for color images differed from those for grayscale 
images, in that neuromorphic pre-processing of color images 
improved true positives but did not improve false positives, 
whereas for grayscale images it weakly but non-significantly 
improved both true and false positives. We believe this is due 
to two factors. First, the DNN was pre-trained on and optimized 
for color images, which resulted in better performance on the 
color images. However, the neuromorphic pre-processing was 
limited to the grayscale version of the color image due to the 
limited number of neurons we could include in the emulation. 
Second, the lower accuracy of the DNN for grayscale images 
resulted in fewer true positives and false positives, which 
rendered the results non-significant even though they were in 
the right direction. We believe these factors can be addressed 
in future work in which our network is hardware accelerated. 
     The limited but promising improvements provided by our 
current SNN model suggest that this first-order SNN 
approximation of cortical pre-attentive visual processing may 
be a fruitful path to pursue. To improve object detection 
beyond just vertical and horizontal orientations in our SNN 
model, we need to increase the number of edge detection 
groups to three or more. This can be accomplished by 
expanding the number of excitatory groups in Layer 1, with one 
decision inhibitory neuron servicing multiple excitatory 
neurons. To synthesize this information in Layer 2, a simplified 
version of a dendritic arbor can be introduced [27]. Each 
branch of the dendritic tree represents one possible grouping 
of pedestal luminances, allowing for multimodal integration. 
An inhibitory control neuron can use shunting inhibition to 
gate which dendritic branch is silenced, based on the local 
connectivity of VIP and SST neurons that is key for 
incorporating contextual information in the cortex [20]. This 
neural architecture could allow the network to handle 
arbitrary synthesis and perception of groupings while still 
reproducing the particular results of the experiment. 
Additionally, because of the dendritic tree, this model could 
easily scale to other modalities such as color, shape, or texture. 
     This approach has the potential to significantly improve 
object detection by allowing for more complex and nuanced 
grouping of visual information. However, implementing this 
model will require a larger number of neurons and layers, 
particularly if it is to be extended to natural scenes. For 
example, additional improvements may be gained by 
increasing the number of spatial frequencies and phases in our 
orientation neurons, increasing the sampling density, and 
increasing the effective distance and variety of contextual 
interactions (e.g. to include co-circular interactions; Zucker, 
1985 [28]), and extending the model for color processing [3]. 
Furthermore, the effectiveness of this approach will need to be 
compared to other models such as convolutional neural 
networks (CNN) and connectionist models, and validated 
against real psychometric experiments using maximal 

likelihood frameworks [29]. 
     In addition to increasing the number of luminance groups 
and introducing a dendritic arbor, there are also other ways to 
improve contrast adjustment. One potential issue that may be 
affecting the results is the presence of darker regions, which 
can negatively impact image segmentation and object 
detection. However, we note that the primary visual cortex 
preferentially responds to dark versus light [30], which we 
speculate may support processing of HDR scenes. Additionally, 
the choice of the optimal k value for adjusting the contrast 
could be further optimized. Testing a wide range of k values 
could help us zero in on the optimal k. 
     Furthermore, it would be interesting to benchmark this 
algorithm against traditional methods such as histogram 
equalization[31] or adaptive thresholding [32] can be used to 
improve contrast and mitigate the impact of dark regions.  
     In summary, our study demonstrates the importance of SNN 
preprocessing techniques in improving the performance of 
DNN-based object detection systems and highlights the 
potential benefits of our preprocessing circuit, especially in 
challenging conditions. Our method can be applied to other 
object detection systems, and we believe that it has the 
potential to enhance the performance on tasks such as optic 
flow and obstacle avoidance, particularly in the real world 
under non-uniform illumination and high clutter. Our findings 
thus provide valuable insights for future research across the 
fields of neuromorphic computing, computer vision, and deep 
learning and advance research into their combined 
development to address real-world challenges. 
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